, Volume 98, Issue 2, pp 199–203

Chromosomal variation in the southern short-tailed shrew (Blarina carolinensis)

  • Diana A. Elrod
  • Melvin L. Beck
  • Michael L. Kennedy


Chromosomal polymorphism was assessed in the southern short-tailed shrew (Blarina carolinensis) using standard metaphase chromosome and G-banding techniques. Twenty-one animals (11 males, 10 females) from the Meeman Biological Station in Shelby Co., Tennessee, were examined for diploid number. Results showed diploid numbers of 35, 36, 37, 38, 39, 40 and 41 and fundamental numbers of 41, 42, 43, 44 and 45. No diploid numbers or fundamental numbers were unique to a specific collecting locality. The first G-banded karyotypes are reported for the species. These results indicate that Robertsonian polymorphisms, inversions, and possibly other events are responsible for chromosomal variation in B. carolinensis.

Key words

shrew cytogenetics translocations monobrachial homology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker R.J. & M.B. Qumsiyeh, 1988. Methods for chiropteran mitotic chromosomal studies, pp. 425–435, in Ecological and behavioral methods for the study of bats, edited by T.H. Kunz. Smithsonian Institution Press, Washington, D.C.Google Scholar
  2. Baker R.J., M.B. Qumsiyeh & C.S. Hood, 1987. Role of chromosomal banding patterns in understanding mammalian evolution, Vol. 1, pp. 67–95. In Current mammalogy, edited by H.H. Genoways. Plenum Publishing Corporation, New York.Google Scholar
  3. Beck M.L., C.J. Biggers & J.A. Huggins, 1991. Variation in chromosome number in the southern short-tailed shrew Blarina carolinensis. Mammalia 55: 623–625.Google Scholar
  4. Berland H.M., A. Sharma, E.P. Cribiu, R. Darre, J. Boscher & C.P. Popescu, 1988. A new case of Robertsonian translocations in cattle. Journal of Heredity 79: 33–36.Google Scholar
  5. Elder F.F.B. 1980. Tandem fusion, centric fusion, and chromosomal evolution in the cotton rats, genus Sigmodon. Cytogenetic and Cell Genetics 27: 31–38.Google Scholar
  6. Elrod, D.A., 1992. Genetic Studies of Odocoileus virginianus and Blarina carolinensis: I. temporal assessment of genetic variability in a population of white-tailed deer (Odocoileus virginianus); II. chromosomal variation in the southern short-tailed shrew (Blarina carolinensis). Unpubl. M.S. thesis, Memphis State University, Memphis, Tennessee.Google Scholar
  7. Fedyk S., W. Chetnicki & A. Banaszek, 1991. Genetic differentiation of Polish populations of Sorex araneus L. III. Interchromosomal recombination in a hybrid zone. Evolution 45: 1384–1392.Google Scholar
  8. Genoways H.H., J.C. PattonIII & J.R. Choate, 1977. Karyotypes of shrews of the genera Cryptotis and Blarina (Mammalia: Soricidae). Experientia 33: 1294–1295.Google Scholar
  9. George S.B., H.H. Genoways, J.R. Choate & R.J. Baker, 1982. Karyotypic relationships within the short-tailed shrew, genus Blarina. Journal of Mammalogy 63: 639–645.Google Scholar
  10. Gropp A. & H. Winking, 1981. Robertsonian translocations: cytology, meiosis, segregation patterns and biological consequences of heterozygosity. Symposium of the Zoological Society of London 47: 141–181.Google Scholar
  11. Hafner J.C. & D.R. Sandquist, 1989. Postmortem field preparation of bird and mammal chromosomes: an evaluation involving the pocket gopher, Thomomys bottae. The Southwestern Naturalist 34: 330–337.Google Scholar
  12. Meylan A., 1967. Formules chromosomiques et polymorphisme Robertsonien chez Blarina brevicauda (Say) (Mammalia: Insectivora). Canadian Journal of Zoology 45: 1119–1127.Google Scholar
  13. Reumer J.W.F. & A. Meylan, 1986. New developments in vertebrate cytotaxonomy. IX. Chromosome numbers in the order Insectivora (Mammalia). Genetica 70: 119–151.Google Scholar
  14. Rogers D.S., I.F. Greenbaum, S.J. Gunn & M.D. Engstrom, 1984. Cytosystematic value of chromosomal inversion data in the genus Peromyscus (Rodentia: Cricetidae). Journal of Mammalogy 65: 457–465.Google Scholar
  15. Searle J.B. 1984. Hybridization between Robertsonian karyotypic races of the common shrew Sorex araneu. Experientia 40: 876–878.Google Scholar
  16. Van Tuinen P. & M. Valentine, 1982. A non-invasive technique of avian tissue culture (feather pulp) for banded chromosome preparations. Mammalian Chromosome Newsletter 23: 182–186.Google Scholar
  17. Van Tuinen P., T.J. Robinson & G.A. Feldhammer, 1983. Chromosome banding and NOR location in sika deer. Journal of Heredity 74: 473–474.Google Scholar
  18. Volobouev V.T., 1989. Phylogenetic relationships of the Sorex araneus-arcticus species complex (Insectivora, Soricidea) based on high resolution chromosome analysis. Journal of Heredity 80: 284–290.Google Scholar
  19. Yong H.S., 1971. Chromosome polymorphism in the Malayan house shrew, Suncus murinus (Insectivora, Soricidea). Experientia 27: 589–591.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Diana A. Elrod
    • 1
  • Melvin L. Beck
    • 1
  • Michael L. Kennedy
    • 1
  1. 1.Department of BiologyUniversity of MemphisMemphisUSA
  2. 2.Department of Biological SciencesUniversity of North TexasDentonUSA

Personalised recommendations