Boundary-Layer Meteorology

, Volume 18, Issue 2, pp 131–143 | Cite as

Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Μm

  • P. Y. Deschamps
  • T. Phulpin


Atmospheric effects upon the radiometric determination of surface temperature were studied for channels centered at 3.7, 11 and 12 Μm. The error due to the atmosphere is least for the channel centered at 3.7 Μm, which is a real advantage. The use of a linear combination of two or all three of these channels allows one to eliminate most of the atmospheric effect. If instrumental noise of from 0.1 to 0.2 K is accounted for in each channel, the best results are obtained by a combination of the two channels at 3.7 and 12 Μm.


Atmosphere Surface Temperature Linear Combination Atmospheric Correction Atmospheric Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anding, D. and Kauth, R.: 1970, ‘Estimation of Sea Surface Temperature from Space’, Remote Sensing Environ., 1, 217–220.Google Scholar
  2. Bignell, K. J.: 1970, ‘The Water Vapor Infrared Continuum’, Quart. J. Roy. Meteorol. Soc., 96, 390–403.Google Scholar
  3. Brower, R. L., Gohrband, H. S., Pichel, W. G., Signore, T. L., and Walton, C. C.: 1976, ‘Satellite Derived Sea Surface Temperatures from NOAA Spacecraft’, NOAA Techn. Memorandum NESS 78.Google Scholar
  4. Burch, D. E., and Gryvnak, D. A.: 1970, ‘Atmospheric Attenuation in the Infrared Windows’, in Space-Opt. Semin.-in-Depth, Santa Barbara, Calif., 1969, 17–22.Google Scholar
  5. Cogan, J. L., and Willand, J. H.: 1976, ‘Measurement of Sea Surface Temperature by the NOAA 2 Satellite’, J. Appl. Meteorol. 15, 173–180.Google Scholar
  6. Deschamps, P. Y.: 1977, ‘Télédétection de la température de surfaee de la mer par radiométrie infrarouge’, Thèse de Doctorat d'Etat, Université de Lille, No. 376.Google Scholar
  7. Deschamps, P. Y., and Phulpin, T.: 1978, ‘Elimination de l'effet de l'atmosphère et optimisation des bandes spectrales d'un radiomètre infrarouge à un ou deux canaux pour la mesure de la température de surface des sols’, in Proc. Int. Conf. on Earth Observation from Space, Toulouse, 1978, ESA SP-134, 347–353.Google Scholar
  8. Maul, G. A., and Sidran, M.: 1973, ‘Atmospheric Effects on Ocean Surface Temperature Sensing from the NOAA Satellite Scanning Radiometer’, J. Geophys. Res., 78, 1909–1916.Google Scholar
  9. Meyer, W. D.: 1973, ‘Data Acquisition and Processing Program: a Meteorological Data Source’, Bull. Amer. Meteorol. Soc., 54, 1251–1254.Google Scholar
  10. McMillin, L. M.: 1975, ‘Estimation of Sea Surface Temperatures from Two Infrared Window Measurements with Different Absorption’, J. Geophys. Res., 80, 5113–5117.Google Scholar
  11. Pontier, L., and Dechambenoy, C.: 1966, ‘Détermination des constantes optiques de l'eau liquide entre 1 et 40 Μm’, Ann. Geophys., 22, 633–641.Google Scholar
  12. Prabhakara, C., Dalu, G. and Kunde, V. G.: 1974, ‘Estimation of Sea Surface Temperature from Remote Sensing in the 11- to 13-Μm Window Region’, J. Geophys. Res., 79, 5039–5044.Google Scholar
  13. Selby, J. E. A., Shettle, E. P., and McClatchey, R. A.: dy1976, ‘Atmospheric transmittance from 0.25 to 28.5 Μm: Supplement LOWTRAN 3B (1976)’, AFGL Rep. AFGL-TR-76-0258.Google Scholar

Copyright information

© D. Reidel Publishing Co 1980

Authors and Affiliations

  • P. Y. Deschamps
    • 1
    • 2
  • T. Phulpin
    • 1
  1. 1.Laboratoire d'Optique Atmosphérique, ERA 466, Université de Lille IVilleneuve d'AscqFrance
  2. 2.Centre d'Etudes de Méteorologie SpatialeLannionFrance

Personalised recommendations