Advertisement

Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity

  • I. H. Arita
  • V. M. Castano
  • D. S. Wilkinson
Paper

Abstract

Hydroxyapatite (Ca10(PO4)6(OH)2) ceramic sheets with a wide range of porosities (up to 62%) have been prepared. The process is based on the reaction between dicalcium phosphate (CaHPO4) and calcium carbonate (CaCO3). When mixed with the appropriate Ca/P ratio, this proves to be a reliable new method for obtaining hydroxyapatite. Moreover, CaCO3 serves as a gas-forming agent (due to the evolution of carbon dioxide and water during the reaction), which leads to the development of highly porous microstructures. Alternatively, CaHPO4 and CaCO3 can be reacted by calcining at 1000°C to produce pure hydroxyapatite powders. When processed in a similar way, a dense ceramic results. By mixing 50 vol% of CaCO3 and CaHPO4 with precalcined powders, hydroxyapatite with an intermediate porosity was obtained. Moreover, it should be possible to achieve porosity control by mixing different amounts of uncalcined and precalcined powders. All of these powders are colloidally processed using tape casting to produce thin sheets 150–200 μm thick. This technique can be used to make laminates, with or without porosity gradients, up to several millimetres thick.

Keywords

Porosity Hydroxyapatite CaCO3 Calcium Carbonate Dicalcium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Lavernia and J. M. Shoenung, Amer. Ceram. Soc. Bull. 70 (1990) 95.Google Scholar
  2. 2.
    G. Dalcusi and N. Passuti, J. Biomed. Mater. Res. 11 (1990) 86.Google Scholar
  3. 3.
    K. Ioku, S. Somiya and M. Yoshimura, J. Mater. Sci. Lett. 8 (1989) 1203.Google Scholar
  4. 4.
    G. N. Howatt, R. G. Breckenridge and J. M. Brownlow, J. Amer. Ceram. Soc. 30 (1947) 237.Google Scholar
  5. 5.
    R. E. Mistler, Amer. Ceram. Soc. Bull. 69 (1990) 1022.Google Scholar
  6. 6.
    K. P. PLUCKNETT, C. H. CÁCERES and D. S. WILKINSON, in Proceedings of MRS Symposium Vol. 249 (1992)Google Scholar
  7. 7.
    K. P. PLUCKNETT, C. H. CÁCERES and D. S. WILKINSON, J. Amer. Ceram. Soc., submitted (1993).Google Scholar
  8. 8.
    A. J. Sherman, R. H. Tuffias and R. B. Kaplan, Amer. Ceram. Soc. Bull. 69 (1991) 1025.Google Scholar
  9. 9.
    F. F. Lange and K. T. Miller, Adv. Ceram. Mater. 2 (1987) 827.Google Scholar
  10. 10.
    R. Brezny and D. J. Green, J. Amer. Ceram. Soc. 72 (1989) 1145.Google Scholar
  11. 11.
    F. Pernot and A. K. Rashid, in “High tech ceramics”, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 53.Google Scholar
  12. 12.
    K. P. PLUCKNETT, C. HUGHES, C. H. CÁCERES and D. S. WILKINSON, J. Amer. Ceram. Soc., submitted (1993).Google Scholar
  13. 13.
    JOINT COMMITTEE ON POWDER DIFFRACTION STANDARDS, Powder Diffraction File #9-432, Swarthmore. PA (1990).Google Scholar
  14. 14.
    F. Wakai, Y. Kodama and S. Sakaguchi, J. Amer. Ceram. Soc. 73 (1990) 457.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • I. H. Arita
    • 1
  • V. M. Castano
    • 1
  • D. S. Wilkinson
    • 2
  1. 1.Departamento de Física Aplicada y Tecnología Avanzada, Instituto de FísicaUNAMMéxicoMexico
  2. 2.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations