Boundary-Layer Meteorology

, Volume 23, Issue 3, pp 283–306 | Cite as

Models and observations of the growth of the atmospheric boundary layer

  • A. G. M. Driedonks
Article

Abstract

The evolution of the mixed layer during a clear day can be described with a slab model. The model equations have to be closed by a parameterization of the turbulent kinetic energy budget. Several possibilities for this parameterization have been proposed. In order to assess the practical applicability of these models for the atmosphere, field experiments were carried out on ten clear days in 1977 and 1978. Within the accuracy of the measurements the mixed-layer height in fully convective conditions (at noon on clear days) is well predicted taking a constant heat flux ratio % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa0% aaaeaacqaH4oqCcaWG3bWaaSbaaSqaaiaadIgaaeqaaaaakiabg2da% 9iaaicdacaGGUaGaaGOmamaanaaabaGaeqiUdeNaam4DamaaBaaale% aacaWGZbaabeaaaaaaaa!41D4!\[ - \overline {\theta w_h } = 0.2\overline {\theta w_s } \]. In the early morning hours mechanical entrainment is also important. Good overall results are obtained with the entrainment formulation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa0% aaaeaacqaH4oqCcaWG3bWaaSbaaSqaaiaadIgaaeqaaaaakiabg2da% 9iaaicdacaGGUaGaaGOmamaanaaabaGaeqiUdeNaam4DamaaBaaale% aacaWGZbaabeaaaaGccqGHRaWkcaaI1aGaamyDamaaDaaaleaacqGH% xiIkaeaacaaIZaaaaOGaamivaiaac+cacaWGNbGaamiAaaaa!49C1!\[ - \overline {\theta w_h } = 0.2\overline {\theta w_s } + 5u_ * ^3 T/gh\].

Only large differences in the entrainment coefficients lead to significantly different results. Making the entrainment model more complex does not lead to substantial improvement.

The mean potential temperature in the mixed layer is reproduced within 0.5 °C. This temperature is insensitive to the choice of a particular entrainment formulation and depends more on the surface heat input and the temperature gradient in the stable air aloft.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André, J. C., de Moor, G., Lacarrère, P., Therry, G., and du Vachat, R.: 1978, ‘Modeling the 24-hr Evolution of the Mean and Turbulent Structure of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.Google Scholar
  2. Artaz, M. A. and André, J. C.: 1980, ‘Similarity Studies of Entrainment in Convective Mixed Layers’, Boundary-Layer Meteorol. 19, 51–66.Google Scholar
  3. Deardorff, J. W.: 1974a, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.Google Scholar
  4. Deardorff, J. W.: 1974b, ‘Three-Dimensional Numerical Study of Turbulence in an Entraining Mixed Layer’, Boundary-Layer Meteorol. 7, 199–226.Google Scholar
  5. Deardorff, J. W., Willis, G. E., and Lilly, D. K.: 1969, ‘Laboratory investigation of Non-Steady Penetrative Convection’, J. Fluid Mech. 35, 7–31.Google Scholar
  6. Driedonks, A. G. M.: 1981, ‘Dynamics of the Well-Mixed Atmospheric Boundary Layer’, Doctoral Dissertation, Free University of Amsterdam, KNMI Scientific Report WR 81-2, 189 pp.Google Scholar
  7. Driedonks, A. G. M.: 1982, ‘Sensitivity Analysis of the Equations for a Convective Mixed Layer’, Boundary-Layer Meteorol. 22, 475–480.Google Scholar
  8. Driedonks, A. G. M., Van Dop, H., and Kohsiek, W.: 1978, ‘Meteorological Observations on the 213 m Mast at Cabauw in the Netherlands’, Proc. 4th Symp. on Meteor. Observ. and Instr., Denver. Amer. Meteor. Soc., Boston, pp. 41–46.Google Scholar
  9. Dubosclard, G.: 1980, ‘A Comparison between Observed and Predicted Values for the Entrainment Coefficient in the Planetary Boundary Layer’, Boundary-Layer Meteorol. 18, 473–483.Google Scholar
  10. Garnich, N. G. and Kitaygorodskii, S. A.: 1977, ‘On the Rate of Deepening of the Oceanic Mixed Layer’, Izv. Akad. Nauk. USSR Atmos. and Ocean. Phys. 13, 1287–1296.Google Scholar
  11. Garnich, N. C. and Kitaygorodskii, S. A.: 1978, ‘On the Theory of the Upper Quasi-Homogeneous Ocean Layer Owing to the Processes of Purely Wind-Induced Mixing’, Izv. Akad. Nauk. USSR Atmos. and Ocean. Phys. 14, 748–755.Google Scholar
  12. Heidt, F. D.: 1977, ‘The Growth of the Mixed Layer in a Stratified Fluid due to Penetrative Convection’, Boundary-Layer Meteorol. 12, 439–461.Google Scholar
  13. Kantha, L. H., Phillips, O. M., and Azad, R. S.: 1977, ‘On Turbulent Entrainment at a Stable Density Interface’, J. Fluid Mech. 79, 753–768.Google Scholar
  14. Kato, H., and Phillips, O. M.: 1969, ‘On the Penetration of a Turbulent Layer into Stratified Fluid’, J. Fluid Mech. 37, 643–655.Google Scholar
  15. Linden, P. F.: 1975, ‘The Deepening of a Mixed Layer in a Stratified Fluid’, J. Fluid Mech. 71, 385–405.Google Scholar
  16. Price, J. F.: 1979, ‘On the Scaling of Stress-Driven Entrainment Experiment’, J. Fluid Mech. 90, 509–529.Google Scholar
  17. Price, J. F., Mooers, C. N. K., and van Leer, J. C.: 1978, ‘Observation and Simulation of Storm-Driven Mixed-Layer Deepening’, J. Phys. Oceanogr. 8, 582–599.Google Scholar
  18. Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.Google Scholar
  19. Tennekes, H.: 1975, ‘Reply to Zilitinkevich’, J. Atmos. Sci. 32, 992–995.Google Scholar
  20. Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, Mass., 300 pp.Google Scholar
  21. Tennekes, H. and Driedonks, A. G. M.: 1981, ‘Basic Entrainment Equations for the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 20, 515–531.Google Scholar
  22. Thompson, R. O. R. Y.: 1979, ‘A Re-Interpretation of the Entrainment Process in some Laboratory Experiments’, Dyn. of Atmos. and Oceans 4, 45–55.Google Scholar
  23. Turner, J. S.: 1973, Buoyancy Effects in Fluids, Cambridge University Press.Google Scholar
  24. Willis, O. E. and Deardorff, J. W.: 1974, ‘A laboratory Model of the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31, 1297–1307.Google Scholar
  25. Zeman, O.: 1975, ‘The Dynamics of Entrainment in the Planetary Boundary Layer: A Study in Turbulence Modeling and Parameterization’, Ph.D. Dissertation, The Pennsylvania State Univ.Google Scholar
  26. Zeman, O., and Tennekes, H.: 1977, ‘Parameterization of the Turbulent Kinetic Energy Budget at the Top of the Daytime Boundary Layer’, J. Atmos. Sci. 34, 111–123.Google Scholar
  27. Zilitinkevich, S. S.: 1975, ‘Comments on a Paper by H. Tennekes’, J. Atmos. Sci. 32, 991–992.Google Scholar
  28. Zilitinkevich, S. S., Chalikov, D. V., and Resnyansky, Yu. D.: 1979, ‘Modeling the Oceanic Upper Layer’, Oceanologica Acta 2, 219–240.Google Scholar

Copyright information

© D. Reidel Publishing Co 1982

Authors and Affiliations

  • A. G. M. Driedonks
    • 1
  1. 1.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands

Personalised recommendations