Advertisement

Genetica

, Volume 46, Issue 2, pp 161–176 | Cite as

Cytogenetics of the Scilla scilloides complex

I. Karyotype, genome, and population
  • Tutomu Haga
  • Shozo Noda
Article

There are two cytogenetically well differentiated genomes, A (x=8) and B (x=9), in the Scilla scilloides complex. The principal cytogenetic types form an aneuploidal series of chromosome numbers, i.e., AA (2n=16), BB (2n=18), ABB (2n=26), BBB (2n=27), AABB (2n=34), ABBB (2n=35), BBBB (2n=36), and AABBB (2n=43). These types are widespread in the Japanese islands, excepting AA which is confined to Korea. On the contrary diploid BB is not known from Korea. However, polyploids AABB and AABBB are known from both Japan and Korea.

Plants of the complex do not grow in wild lands or montane regions, but in close relation to man's activities, e.g., in agricultural lands, on river banks, along roadways and railway lines, and in graveyards. Natural populations are, as a rule, a mixture of many different cytogenetic types.

Keywords

Natural Population Agricultural Land Chromosome Number Close Relation River Bank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, H.. (1971). Cytogeneties of Scilla scilloides complex. III. Homoeology between genomes A (x=8) and B (x=9). Jap. J. Genet. 46: 265–275.Google Scholar
  2. Araki, H. (1972a). Cytogenetics of Scilla scilloides complex. IV. Eu- and aneuploid offspring from allotriploids in a natural population. Jap. J. Genet. 47: 73–83.Google Scholar
  3. Araki, H. (1972b). Cytogenetic study of Scilla scilloides from Korea. (Japanese with English summary). Jap. J. Genet. 47: 147–150.Google Scholar
  4. Darlington, C. D. (1965). Cytology. xvi + 768 p. J. & A. Churchill Ltd., London.Google Scholar
  5. Darlington, C. D. & A. P. Wylie (1961). Chromosome Atlas of Flowering Plants. 2nd ed. xx + 519 p. George Allen & Unwin, London.Google Scholar
  6. Haga, T. (1961). Intra-individual variation in number and linear patterning of the chromosomes. I. B-chromosomes in Rumex, Paris, and Scilla. Proc. Japan Acad. 37: 627–635.Google Scholar
  7. Haga, T. & S. Noda (1956). Chromosome constitutions of Scilla scilloides Druce, a species complex. (Japanese with English summary). La Kromosomo 27–28: 948–955.Google Scholar
  8. Haga, T. & S. Noda (1958). Cytogenetic population structure of Scilla scilloides Druce: A complex. Proc. Xth Intern. Congr. Genet. 2: 109.Google Scholar
  9. Haga, T. & S. Noda (1963). Population structure and dynamics in a complex Scilla scilloides (Liliaceae). Genetics Today (S. J. Geerts, ed.) 1: 150. Pergamon Press, Oxford/London/New York/Paris.Google Scholar
  10. Jackson, R. C. (1962). Interspecific hybridization in Haplopappus and its bearing on chromosome evolution in Blepharodon Section. Amer. J. Bot. 49: 119–132.Google Scholar
  11. Jackson, R. C. (1965). A cytogenetic study of a three-paired race of Haplopappus gracilis. Amer. J. Bot. 52: 946–953.Google Scholar
  12. John, B. & K. R. Lewis (1968). The Chromosome Complement. Protoplasmatologia VI. A, 206 p. Springer-Verlag, Wien/New York.Google Scholar
  13. Kayano, H. (1969). A chromosomal chimera in a plant of Lilium callosum with a complex translocation. Heredity 24: 490–495.Google Scholar
  14. Lewis, H. (1953). The mechanism of evolution in the genus Clarkia. Evolution 7: 1–20.Google Scholar
  15. Lövkvist, T. B. (1956). The Cardamine pratensis complex. Outline of its cytogenetics and taxonomy. Symb. Bot. Upsal., xiv: 2, 1–134+xvi maps.Google Scholar
  16. Maekawa, F. (1944). Prehistoric-naturalized plants to Japan proper. (Japanese). Acta phytotax. geobot. 13: 274–279.Google Scholar
  17. Moore, D. M. & H. Lewis (1966). Variation and evolution in South American Clarkia. Heredity 21: 37–56.Google Scholar
  18. Morinaga, T. (1932). A preliminary note on the karyological types of Scilla japonica Bak. Jap. J. Genet. 7: 202–205.Google Scholar
  19. Noda, S. (1967). Samplings in the natural populations of Scilla scilloides. (Japanese with English summary). Bull. Osaka Gakuin Univ. No. 7: 83–104.Google Scholar
  20. Noda, S. (1974). Cytogenetics of Scilla scilloides complex. II. Evidences for homoeological relationship between the genomes. Cytologia 39: 777–782.Google Scholar
  21. Ohwi, J. (1961). Flora of Japan. (Japanese). 1383 p. Shibundo, Tokyo.Google Scholar
  22. Okabe, S. (1938). Über den Karyotypus einer n=9-chromosomigen Rasse von Scilla Thunbergii Miyabe et Kudo. (Japanese). Botany Zool. 6: 481–483.Google Scholar
  23. Satô, D. (1935). Chromosome studies in Scilla. I. Analysis of karyotypes in Scilla with special reference to the origin of aneuploids. Bot. Mag. (Tokyo). 49: 298–305.Google Scholar
  24. Satô, D. (1939). Karyotype alteration and phylogeny. (Japanese). Bot. Mag. (Tokyo). 53: 557–564.Google Scholar
  25. Satô, D. (1942). Karyotype alteration and phylogeny in Liliaceae and allied families. Jap. J. Bot. 12: 57–161.Google Scholar
  26. Satô, D. (1953). Karyotype analysis and law of homologous series. Scient. Pap. Coll. gen. Educ. Tokyo Univ. 3: 181–192.Google Scholar
  27. Sharma, A. K. (1956). A new concept of a mean of speciation in plants. Caryologia 9: 93–130.Google Scholar
  28. Sharma, A. K. & R. Mallik (1965a). Interrelationships and evolution of the tribe Aloineae as reflected in its cytology. J. Genet. 59: 110–137.Google Scholar
  29. Sharma, A. K. & S. Mukhopachyay (1965b). Cytological study on two genera of Araceae and correct assessment of taxonomic status. Genet. agr. 18: 603–616.Google Scholar
  30. Smith-White, S., C. R. Carter & H. M. Stace (1970a). The cytology of Brachycome. I. The subgenus Eubrachycome: A survey. Aust. J. Bot. 18: 99–125.Google Scholar
  31. Smith-White, S. & C. R. Carter (1970b). The cytology of Brachycome lineariloba. The chromosome species and their relationships. Chromosoma 30: 129–153.Google Scholar
  32. Sunda Rao, Y. (1954). Chromosomes of Scilla hohenackeri Fisch. & May. Curr. Sci. 23: 94–95.Google Scholar
  33. Stebbins, G. L. (1950). Variation and Evolution in Plants. xxi + 643 p. Columbia Univ. Press, New York.Google Scholar
  34. Stebbins, G. L. (1971). Chromosomal Evolution in Higher Plants. viii + 216 p. Edward Arnold Ltd., London.Google Scholar
  35. Swanson, C. P. (1958). Cytology and Cytogenetics. x + 596 p. Macmillan, London.Google Scholar
  36. Yamaguchi, T. (1959). The journey of the Lycoris radiata Herb. to Japan as a relief plant a rice lean year. (Japanese). Nat. Sci. Mus., Tokyo 26: 147–153.Google Scholar

Copyright information

© Martinus Nijhoff 1976

Authors and Affiliations

  • Tutomu Haga
    • 1
  • Shozo Noda
    • 2
  1. 1.Department of BiologyKyushu UniversityFukuoka
  2. 2.Biological InstituteOsaka Gakuin UniversitySuita

Personalised recommendations