Boundary-Layer Meteorology

, Volume 78, Issue 3–4, pp 321–349 | Cite as

Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress

  • J. M. Wilczak
  • E. E. Gossard
  • W. D. Neff
  • W. L. Eberhard


The role of ground-based remote sensors in boundary-layer research is reviewed, emphasizing the contributions of radars, sodars, and lidars. The review begins with a brief comparison of the state of remote sensors in boundary-layer research 25 years ago with its present-day status. Next, a summary of the current capabilities of remote sensors for boundary-layer studies demonstrates that for boundary-layer depth and for profiles of many mean quantities, remote sensors offer some of the most accurate measurements available. Similar accuracies are in general not found for most turbulence parameters. Important contributions of remote sensors to our understanding of the structure and dynamics of various boundary-layer phenomena or processes are then discussed, including the sea breeze, convergence boundaries, dispersion, and boundary-layer cloud systems. The review concludes with a discussion of the likely future role of remote sensors in boundary-layer research.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, B. A., Randall, D. A., and Nicholls, S.: 1988, ‘Observations of Marine Stratocumulus Clouds During FIRE’, Bull. Amer. Meteorol. Soc. 69, 618–626.Google Scholar
  2. Angevine, W. M. and Ecklund, W. L.: 1994, ‘Errors in Radio Acoustic Sounding of Temperature’, J. Atmos. Ocean. Technol. 11, 42–49.Google Scholar
  3. Angevine, W. M. and MacPherson, J. I.: 1995, ‘Comparison of Wind Profiler and Aircraft Wind Measurements at Chebogue Point, Nova Scotia’, J. Atmos. Ocean. Technol. 12(2), 421–426.Google Scholar
  4. Angevine, W. M., Avery, S. K., and Kok, G. L.: 1993, ‘Virtual Heat Flux Measurements from a Boundary-Layer Profiler — RASS Compared to Aircraft Measurements’, J. Appl. Meteorol. 32, 1901–1907.Google Scholar
  5. Angevine, W. M., Doviak, R. J., and Sorbjan, Z.: 1994a, ‘Remote Sensing of Vertical Velocity Variance and Surface Heat Flux in a Convective Boundary Layer’, J. Appl. Meteorol. 33(8), 977–983.Google Scholar
  6. Angevine, W. M., White, A. B., and Avery, S. K.: 1994b, ‘Boundary-Layer Depth and Entrainment Zone Characterization with a Boundary-Layer Profiler’, Boundary-Layer Meteorol. 68, 375–385.Google Scholar
  7. Atkins, N. T., Wakimoto, R. M., and Weckwerth, T. M.: 1995, ‘Observations of the Sea-Breeze Front during CaPE. Part II: Dual-Doppler and Aircraft Analysis’, Mon. Wea. Rev. 123, 944–969.Google Scholar
  8. Atkinson, B. W.: 1981, Mesoscale Atmospheric Circulations. Academic Press, pp. 125–214.Google Scholar
  9. Atlas, D.: 1962, ‘Indirect Probing Techniques’, Bull. Amer. Meteorol. Soc. 43, 457–466.Google Scholar
  10. Atlas, D.: 1964, ‘Advances in Radar Meteorology’, in Adv. in Geophysics, vol. 10, 478 pp.Google Scholar
  11. Atlas, D., Metcalf, J. I., Richter, J. H., and Gossard, E. E.: 1970, ‘The Birth of “CAT” and Microscale Turbulence’, J. Atmos. Sci. 27, 903–913.Google Scholar
  12. Banta, R. M., Olivier, L. D., and Levinson, D. H.: 1993, ‘Evolution of the Monterey Bay Sea-Breeze Layer as Observed by Pulsed Doppler Lidar’, J. Atmos. Sci. 50(24), 3959–3982.Google Scholar
  13. Banta, R. M., Olivier, L. D., Neff, W. D., Levinson, D. H., and Ruffieux, D.: 1995, ‘Influence of Canyon-Induced Flows on Flow and Dispersion over Adjacent Plains’, Theor. Appl. Climatol. 2, 1–16.Google Scholar
  14. Beyrich, R, and Weill, A.: 1993, ‘Some Aspects of Determining the Stable Boundary Layer Depth from Sodar Data’, Boundary-Layer Meteorol. 63, 97–116.Google Scholar
  15. Bisson, S. E. and Goldsmith, J. E. M.: 1995, ‘Measurements of Daytime and Upper Tropospheric Water Vapour Profiles by Raman Lidar’, Optical Remote Sensing of the Atmosphere, Technical Digest Series, Salt Lake City, Utah, Opt. Soc. Amer., vol. 2, pp. 220–223.Google Scholar
  16. Boers, R. and Eloranta, E. W.: 1986, ‘Lidar Measurements of the Atmospheric Entrainment Zone and the Potential Temperature Jump Across the Top of the Mixed Layer’, Boundary-Layer Meteorol. 34, 357–375.Google Scholar
  17. Booker, H. G. and Gordon, W. E.: 1950, ‘A Theory of Radio Scattering in the Troposphere’, Proc. IRE 38, 401–412.Google Scholar
  18. Bösenberg, J., Ancellet, G., Apituley, A., Bergwerff, H., V. Cossart, G., Edner, H., Fiedler, J., Galle, B., de Jonge, C., Mellqvist, J., Mitev, V, Schaberl, T., Sonnemann, G., Spakman, J., Swart, D., and Wallinder, E.: 1993, ‘Tropospheric Ozone Lidar Intercomparison Experiment, TROLIX '91, Field Phase Report’, Report 102, Max Planck Institut für Meteorologie, Hamburg, ISSN 0937–1060, 239 pp.Google Scholar
  19. Bösenberg, J., Schaberl, T., and Senff, C.: 1995, ‘Remote Measurement of Trace Gas Fluxes in the Convective Boundary Layer Using Differential Absorption Lidar and Radar/RASS’, Conf. Proc., Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (Atlanta, Georgia), IEEE, pp. 160–162.Google Scholar
  20. Briggs, G. A.: 1993a, ‘Plume Dispersion in the Convective Boundary Layer. Part II: Analyses of CONDORS Field Experiment Data’, J. Appl. Meteorol. 32, 1388–1425.Google Scholar
  21. Briggs, G. A.: 1993b, ‘Final Results of the CONDORS Convective Diffusion Experiment’, Boundary-Layer Meteorol. 62, 315–328.Google Scholar
  22. Brown, E. H. and Hall, F. F.: 1978, ‘Advances in Atmospheric Acoustics’, Rev. Geophys. Space Phys. 16, 47–109.Google Scholar
  23. Browning, K. A. and Wexler, R.: 1968, ‘A Determination of Kinematic Properties of a Wind Field Using Doppler Radar’, J. Appl. Meteorol. 7, 105–113.Google Scholar
  24. Chadwick, R. B. and Gossard, E. E.: 1983, ‘Radar Remote Sensing of the Clear Atmosphere — Review and Applications’, Proc. IEEE 71, 738–753.Google Scholar
  25. Chertock, B., Fairall, C. W., and White, A. B.: 1993, ‘Surface-Based Measurements and Satellite Retrievals of Broken Cloud Properties in the Equatorial Pacific’, J. Geophys. Res. 98, 18489–18500.Google Scholar
  26. Chintawongvanich, P., Olsen, R., and Biltoft, C. A.: 1989, ‘Intercomparison of Wind Measurements From Two Acoustic Doppier Sodars, a Laser Doppler Lidar, and In Situ Sensors’, J. Atmos. Ocean. Technol. 6, 785–797.Google Scholar
  27. Clothiaux, E. E., Miller, M. A., Albrecht, B. A., Ackerman, T. P., Verlinde, J., Babb, D. M., Peters, R. M., and Syrett, W. J.: 1995, ‘An Evaluation of a 94-GHz Radar for Remote Sensing of Cloud Properties’, J. Atmos. Ocean. Technol. 12, 201–229.Google Scholar
  28. Cohn, S. A.: 1995a, ‘Radar Measurements of Turbulent Eddy Dissipation Rate in the Troposphere: A Comparison of Techniques’, J. Atmos. Ocean. Technol. 12, 85–95.Google Scholar
  29. Cohn, S. A.: 1995b, ‘Interactions Between Clear-Air Reflective Layers and Rain Observed with a Boundary-Layer Wind Profiler’, Radio Sci. 30, 323–341.Google Scholar
  30. Cooper, D. I., Eichinger, W. E., Holtkamp, D. B., Karl, R. R. Jr., Quick, C. R., Dugas, W., and Hipps, L.: 1992, ‘Spatial Variability of Water Vapour Turbulent Transfer within the Boundary Layer’, Boundary-Layer Meteorol. 61, 389–406.Google Scholar
  31. Coulter, R. L. and Wesely, M. L.: 1980, ‘Estimates of Surface Heat Flux from Sodar and Laser Scintillation Measurements in the Unstable Boundary Layer’, J. Appl. Meteorol. 19, 1209–1222.Google Scholar
  32. Doviak, R. J. and Zrnić, D. S.: 1984, Doppler Radar and Weather Observations. Academic Press, 458 pp.Google Scholar
  33. Dupont, E., Pelon, J., and Flamant, C.: 1994, ‘Study of the Moist Convective Boundary-Layer Structure by Backscattering Lidar’, Boundary-Layer Meteorol. 69, 1–26.Google Scholar
  34. Eaton, F. D., McLaughlin, S. A., and Hines, J. R.: 1995, ‘A New Frequency-Modulated Continuous Wave Radar for Studying Planetary Boundary Layer Morphology’, Radio Sci. 30, 75–88.Google Scholar
  35. Eberhard, W. L., Cupp, R. E., and Healy, K. R.: 1989, ‘Doppler Lidar Measurement of Profiles of Turbulence and Momentum Flux’, J. Atmos. Ocean. Technol. 6, 809–819.Google Scholar
  36. Ecklund, W. L., Carter, D. A., and Balsley, B. B.: 1988, ‘A UHF Wind Profiler for the Boundary Layer: Brief Description and Initial Results’, J. Atmos. Ocean. Technol. 5, 439–441.Google Scholar
  37. Eichinger, W. E., Cooper, D. I., Holtkamp, D. B., Karl, R. R., Jr., Quick, C. R., and Tiee, J. J.: 1993, ‘Derivation of Water Vapour Fluxes From Lidar Measurements’, Boundary-Layer Meteorol. 63, 39–64.Google Scholar
  38. Eichinger, W. E., Cooper, D. I., Archuletta, D. H., Holtkamp, D. B., Karl, R. R. Jr., Quick, C. R., and Tiee, J.: 1994, ‘Development of a Scanning, Solar-Blind, Water Raman Lidar’, Appl. Opt. 33, 3923–3932.Google Scholar
  39. Eymard, L. and Weill, A.: 1988, ‘Doppler Radar Analysis of Four Cases in the Tropical Convective Boundary Layer’, J. Atmos. Sci. 45, 853–864.Google Scholar
  40. Ferrare, R. A., Melfi, S. H., Whiteman, D. N., Evans, K. D., and Schmidlin, F. J.: 1994, ‘A Comparison of Water Vapour Measurements Made by Raman Lidar and Radiosondes’, Abstracts, 17th Intl Laser Radar Conf., Laser Radar Soc. of Japan, Sendai, Japan, 152–155.Google Scholar
  41. Finkelstein, P. L., Kaimal, J. C., Gaynor, J. E., Graves, M. E., and Lockhart, T. J.: 1986, ‘Comparison of Wind Monitoring Systems. Part II: Doppler Sodars’, J. Atmos. Ocean. Technol. 3, 594–604.Google Scholar
  42. Frehlich, R., Hannon, S. M., and Henderson, S. W.: 1994, ‘Performance of a 2-Μm Coherent Doppler Lidar for Wind Measurements’, J. Atmos. Ocean. Technol. 11, 1517–1528.Google Scholar
  43. Friend, A. W.: 1939, ‘Continuous Determination of Air-Mass Boundaries by Radio’, Bull. Amer. Meteorol. Soc. 20, 202–205.Google Scholar
  44. Frisch, A. S. and Clifford, S. F.: 1974, ‘A Study of Convection Capped by a Stable Layer Using Doppler Radar and Acoustic Echo Sounders’, J. Atmos. Sci. 31, 1622–1628.Google Scholar
  45. Frisch, A. S., Martner, B. E., and Gibson, J. S.: 1989, ‘Measurement of the Vertical Flux of Turbulent Kinetic Energy with a Single Doppler Radar’, Boundary-Layer Meteorol. 49, 331–337.Google Scholar
  46. Frisch, A. S., Fairall, C. W., and Snider, J. B.: 1995, ‘Measurement of Stratus Cloud and Drizzle Parameters in ASTEX with a K α-Band Doppler Radar and a Microwave Radiometer’, J. Atmos. Sci. 52, 2788–2799.Google Scholar
  47. Furger, M., Whiteman, C. D., and Wilczak, J.M.: 1995, ‘Uncertainty of Boundary Layer Heat Budgets Computed from Wind Profiler-RASS Networks’, Mon. Wea. Rev. 123, 790–799.Google Scholar
  48. Gage, K. S., Williams, C. R., and Ecklund, W. L.: 1994, ‘UHF Wind Profilers: A New Tool for Diagnosing Tropical Convective Cloud Systems’, Bull. Amer. Meteorol. Soc. 75, 2289–2294.Google Scholar
  49. Gal-Chen, T. and Kropfli, R. A.: 1984, ‘Buoyancy and Pressure Perturbations Derived From Dual-Doppler Radar Observations of the Planetary Boundary Layer: Applications for Matching Models with Observations’, J. Atmos. Sci. 41, 3007–3020.Google Scholar
  50. Gal-Chen, T., Xu, M., and Eberhard, W. L.: 1992, ‘Estimations of Atmospheric Boundary Layer Fluxes and Other Turbulence Parameters from Doppler Lidar Data’, J. Geophys. Res. 97, 18409–18423.Google Scholar
  51. Gauthreaux, S. A., Jr.: 1992, The Use of Weather Radar to Monitor Long-Term Patterns of Trans-Gulf Migration in Spring, in J. M. Hagan in and D. W.Johnston (eds.), Ecology and Conservation of Neotropical Migrant Landbirds, Smithsonian Institution Press, 96–100.Google Scholar
  52. Gaynor, J. E. and Kristensen, L.: 1986, ‘Errors in Second Moments Estimated from Monostatic Doppler Sodar Winds. Part II: Application to Field Measurements’, J. Atmos. Ocean. Technol. 3, 529–534.Google Scholar
  53. Gossard, E. E.: 1990, ‘Radar Research on the Atmospheric Boundary Layer’, in D. Atlas (ed.) Radar in Meteorology, pp. 477–527, American Meteorological Society.Google Scholar
  54. Gossard, E. E.: 1994, ‘Measurement of Cloud Droplet Size Spectra by Doppler Radar’, J. Atmos. Ocean. Technol. 11, 712–726.Google Scholar
  55. Gossard, E. E. and Strauch, R. G.: 1983, Radar Observations of Clear Air and Clouds, Elsevier, Amsterdam, 280 pp.Google Scholar
  56. Gossard, E. E., Richter, J. H., and Atlas, D.: 1970, ‘Internal Waves in the Atmosphere from High-Resolution Radar Measurements’, J. Geophys. Res. 75, 3523–3536.Google Scholar
  57. Hall, F. F., Jr., Huffaker, R. M., Hardesty, R. M., Jackson, M. E., Lawrence, T. R., Post, M. J., Richter, R. A., and Weber, B. F.: 1984, ‘Wind Measurement Accuracy of the NOAA Pulsed Infrared Doppler Lidar’, Appl. Opt. 23, 2503–2506.Google Scholar
  58. Hinkley, E. D. (ed.), Melfi, S. H., Zuev, V. E., Collis, R. T. H., Russell, P. B., Inaba, H., Ku, R. T., Kelley, P. L., and Menzies, R. T.: 1976, Laser Monitoring of the Atmosphere, Topics in Applied Physics, vol. 14, Springer-Verlag, 380 pp.Google Scholar
  59. Hocking, W. K.: 1985, ‘Measurement of Turbulent Energy Dissipation Rates in the Middle Atmosphere by Radar Techniques: A Review’, Radio Sci. 20, 1403–1422.Google Scholar
  60. James, P. K.: 1980, ‘A Review of Radar Observations of the Troposphere in Clear Air Conditions’, Radio Sci. 15, 157–175.Google Scholar
  61. Jorgensen, H. E., and Mikkelsen, T.: 1993, ‘Lidar Measurements of Plume Statistics’, Boundary-Layer Meteorol. 62, 361–378.Google Scholar
  62. Kaimal, J. C., Baynton, H. W., and Gaynor, J. E.: 1980, ‘Low Level Intercomparison Experiment, Instruments, and Observing Methods’, Report No. 3, World Meteorological Organization, Geneva, Switzerland, 190 pp.Google Scholar
  63. Knuteson, R. O., Smith, W. L., Ackerman, S. A., Revercomb, H. E., Woolf, H., and Howell, H.: 1994, ‘Atmospheric Emitted Radiance Interferometer Data Analysis Methods’, Proc., Fourth ARM Science Team Meeting (Charleston, South Carolina), pp. 203–206.Google Scholar
  64. Kristensen, L. and Gaynor, J. E.: 1986, ‘Errors in Second Moments Estimated from Monostatic Doppler Sodar Winds. Part I: Theoretical Description’, J. Atmos. Ocean. Technol. 3, 523–528.Google Scholar
  65. Kropfli, R. A.: 1986a, ‘Radar Probing and Measurement of the Planetary Boundary Layer. Part II. Scattering from Particulates’, in Lenschow, D. H. (ed.), Probing the Atmospheric Boundary Layer, pp. 183–199, American Meteorological Society.Google Scholar
  66. Kropfli, R. A.: 1986b, ‘Single Doppler Radar Measurements of Turbulence Profiles in the Convective Boundary Layer’, J. Atmos. Ocean. Technol. 3, 305–314.Google Scholar
  67. Kropfli, R. A. and Orr, B. W.: 1995, ‘Observations of Microcells in the Marine Boundary Layer with 8-mm Wavelength Doppler Radar’, Preprints, 26th Intl Conf. on Radar Meteorology, Norman, Oklahoma, pp. 492–494.Google Scholar
  68. Kropfli, R. A., Katz, I., Konrad, T. G., and Dobson, E. B.: 1968, ‘Simultaneous Radar Reflectivity Measurements and Refractive Index Spectra in the Clear Atmosphere’, Preprints, 13th Radar Meteorology Conf., Montreal, pp. 270–273.Google Scholar
  69. Larkin, R. P.: 1991, ‘Sensitivity of NEXRAD Algorits to Echoes From Birds and Insects’, Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, 203–205.Google Scholar
  70. Lataitis, R. J.: 1992, ‘Theory and Application of a Radio-Acoustic Sounding System’, Ph.D. Thesis, University of Colorado, 203 pp.Google Scholar
  71. Lhermitte, R.: 1968, ‘Turbulent Air Motion as Observed by Doppler Radar’, Preprints, 13th Radar Meteorology Conf., Montreal, pp. 498–503.Google Scholar
  72. Lhermitte, R.: 1987, ‘A 94-GHz Doppler Radar for Cloud Observations’, J. Atmos. Ocean. Technol. 4, 36–48.Google Scholar
  73. Little, C. G.: 1969, ‘Acoustic Methods for the Remote Probing of the Lower Atmosphere’, Proc. IEEE 53, 571–578.Google Scholar
  74. MacPherson, J. I., Grossman, R. L., and Kelly, R. D.: 1992, ‘Intercomparison Results for FIFE Flux Aircraft’, J. Geophys. Res. 97, 18499–18514.Google Scholar
  75. Mahoney, A. R., McAllister, L. G., and Pollard, J. R.: 1973, ‘The Remote Sensing of Wind Velocity in the Lower Troposphere Using an Acoustic Sounder’, Boundary-Layer Meteorol. 4, 155–167.Google Scholar
  76. Marshall, J. M., Peterson, A. M., and Barnes, A. A., Jr.: 1972, ‘Combined Radar-Acoustic Sounding System’, Appl. Opt. 11, 108–112.Google Scholar
  77. Mastrantonio, G., Viola, A. P., Argentini, S., Fiocco, G., Giannini, L., Rossini, L., Abbate, G., Ocone, R., and Casonato, M.: 1994, ‘Observations of Sea Breeze Events in Rome and the Surrounding Area by a Network of Doppler Sodars’, Boundary-Layer Meteorol. 71, 67–80.Google Scholar
  78. May, P. T.: 1995, ‘The Australian Nocturnal Jet and Diurnal Variations of Boundary-Layer Winds over Mt. Isa in North-Eastern Australia’, Quart. J. Roy. Meteorol. Soc., in press.Google Scholar
  79. May, P. T. and Wilczak, J. M.: 1993, ‘Diurnal and Seasonal Variations of Boundary Layer Structure Observed with a Radar Wind Profiler and RASS’, Mon. Wea. Rev. 121, 673–682.Google Scholar
  80. May, P. T., Moran, K. P., and Strauch, R. G.: 1989, ‘The Accuracy of RASS Temperature Measurements’, J. Appl. Meteorol. 28, 1329–1335.Google Scholar
  81. McAllister, L. G., Pollard, J. R., Mahoney, A. R., and Shaw, P. J. R.: 1969, ‘Acoustic Sounding: A New Approach to the Study of Atmospheric Structure’, Proc. IEEE 57, 579–587.Google Scholar
  82. McLaughlin, S. A.: 1994, ‘FM-CW Radar Observations of Insects and Birds in the Planetary Boundary Layer’, Preprints, 11th Conf. on Biometeorology and Aerobiology, San Diego, 4 pp.Google Scholar
  83. Melfi, S. H., Whiteman, D., and Ferrare, R.: 1989, ‘Observation of Atmospheric Fronts Using Raman Lidar Moisture Measurements’, J. Appl. Meteorol. 28, 789–806.Google Scholar
  84. Merritt, D. A.: 1995, ‘tA Statistical Averaging Method for Wind Profiler Doppler Spectra’, J. Atmos. Ocean. Technol., in press.Google Scholar
  85. Miller, M. A. and Albrecht, B. A.: 1995, ‘Surface-Based Observations of Mesoscale Cumulus-Stratocumulus Interaction During ASTEX’, J. Atmos. Sci. 52, 2809–2826.Google Scholar
  86. Moran, K. P. and Strauch, R. G.: 1994, ‘The Accuracy of RASS Temperature Measurements Corrected for Vertical Air Motion’, J. Atmos. Ocean. Technol. 11, 995–1001.Google Scholar
  87. Neff, W. D.: 1990, ‘Remote Sensing of Atmospheric Processes over Complex Terrain’, in W. Blumen (ed.), Atmospheric Processes over Complex Terrain, pp. 173–228, American Meteorological Society.Google Scholar
  88. Neff, W. D.: 1994, ‘Mesoscale Air Quality Studies with Meteorological Remote Sensing Systems’, Int. J. Remote Sens. 15, 393–426.Google Scholar
  89. Neff, W. D. and Coulter, R. L.: 1986, ‘Acoustic Remote Sensing’, in D. Lenschow (ed.), Probing the Atmospheric Boundary Layer, pp. 201–239, American Meteorological Society.Google Scholar
  90. Nieuwstadt, F. T. M. and De Valk, J. P. J. M. M.: 1987, ‘A Large Eddy Simulation of Buoyant and Non-Buoyant Plume Dispersion in the Atmospheric Boundary Layer’, Atmos. Environ. 21, 2573–2587.Google Scholar
  91. North, E. M., Peterson, A. M., and Parry, H. D.: 1973, ‘RASS, a Remote Sensing System for Measuring Low-Level Temperature Profiles’, Bull. Amer. Meteorol. Soc. 54, 912–919.Google Scholar
  92. Ottersten, H., Hardy, K. R., and Little, C. G.: 1973, ‘Radar and Sodar Probing of Waves and Turbulence in Statically Stable Clear-Air Layers’, Boundary-Layer Meteorol. 4, 47–90.Google Scholar
  93. Pekeris, C. L.: 1947, ‘Note on the Scattering of Radiation in an Inhomogeneous Medium’, Phys. Rev. 71, 268–269.Google Scholar
  94. Peters, G.: 1994, ‘Correction of Turbulence Induced Errors of RASS Temperature Profiles’, Proc., 3rd Intl Symp. on Tropospheric Profiling: Needs and Technologies, Hamburg, Max Planck-Gesellschaft zur Förderung der Wissenschaften, pp. 266–268.Google Scholar
  95. Peters, G. and Kirtzel, H. J.: 1994, ‘Measurements of Momentum Flux in the Boundary Layer by RASS’, J. Atmos. Ocean. Technol. 11, 63–75.Google Scholar
  96. Peters, G., Hinzpeter, H., and Baumann, G.: 1985, ‘Measurements of Heat Flux in the Atmospheric Boundary Layer by Sodar and RASS: A First Attempt’, Radio Sci. 6, 1555–1564.Google Scholar
  97. Peters, G., Thomas, P., and Bauer, M.: 1995, ‘A New Mobile 1.29 GHz Wind and Temperature Profiler Description and First Measurements’, Proc., 3rd Intl Symp. on Tropospheric Profiling: Needs and Technologies, Hamburg, Max Planck-Gesellschaft zur Förderung der Wissenschaften, pp. 320–322.Google Scholar
  98. Piironen, A. K., and Eloranta, E. W.: 1995, ‘Convective Boundary Layer Mean Depths, Cloud Base Altitudes, Cloud Top Altitudes, Cloud Coverages, and Cloud Shadows Obtained from Volume Imaging Lidar Data’, J. Geophys. Res., in press.Google Scholar
  99. Post, M. J. and Neff, W. D.: 1986, ‘Doppler Lidar Measurements of Winds in a Narrow Mountain Valley’, Bull. Amer. Meteorol. Soc. 67, 274–281.Google Scholar
  100. Ralph, F. M.: 1995, ‘Using Radar-Measured Radial Vertical Velocities to Distinguish Precipitation Scattering from Clear-Air Scattering’, J. Atmos. Ocean. Technol. 12, 257–267.Google Scholar
  101. Richter, J. H.: 1969, ‘High Resolution Tropospheric Radar Sounding’, Radio Sci. 4, 1261–1268.Google Scholar
  102. Rogers, R. R., Ecklund, W. L., Carter, D. A., Gage, K. S., and Ethier, S. A.: 1993, ‘Research Applications of a Boundary-Layer Wind Profiler’, Bull. Amer. Meteorol. Soc. 74, 567–580.Google Scholar
  103. Sassen, K.: 1991, ‘The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment’, Bull. Amer. Meteorol. Soc. 72, 1848–1866.Google Scholar
  104. Schneider, J. M.: 1991, Dual Doppler Measurement of a Sheared Convective Boundary Layer, Ph.D. Dissertation, University of Oklahoma, 134 pp.Google Scholar
  105. Senff, C., Bösenberg, J., and Peters, G.: 1994, ‘Measurement of Water Vapour Flux Profiles in the Convective Boundary Layer with Lidar and Radar-RASS’, J. Atmos. Ocean. Technol. 11, 85–93.Google Scholar
  106. Stauffer, D. R. and Seaman, N. L.: 1994, ‘Multiscale Four-Dimensional Data Assimilation’, J. Appl. Meteorol. 33, 416–434.Google Scholar
  107. Tatarskii, V. I.: 1961, Wave Propagation in a Turbulent Medium (R. A. Silverman, translator), McGraw-Hill, New York, 285 pp.Google Scholar
  108. Thomas, P. and Vogt, S.: 1993, ‘Intercomparison of Turbulence Data Measured by Sodar and Sonic Anemometers’, Boundary-Layer Meteorol. 62, 353–359.Google Scholar
  109. Thompson, D. W., Coulter, R. L., and Warhaft, Z.: 1978, ‘Simultaneous Measurements of Turbulence in the Lower Atmosphere Using Sodar and Aircraft’, J. Appl. Meteorol. 17, 723–734.Google Scholar
  110. Uttal, T., Clothiaux, E. E., Ackerman, T. P., Intrieri, J. M., and Eberhard, W. L.: 1995, ‘Cloud Boundary Statistics During FIRE II’, J. Atmos. Sci. 52, 4276–4284.Google Scholar
  111. Van Baelen, J.: 1995, ‘A UHF Boundary Layer/Interferometric Profiler: Comparison of Hourly Wind Measurements in the Doppler Beam Swinging and Multiple Receiver Modes’, Radio Sci. (submitted).Google Scholar
  112. Vaughn, C. R.: 1985, ‘Birds and Insects as Radar Targets: A Review’, Proc. IEEE 73, 205–227.Google Scholar
  113. Vogt, S. and Thomas, P.: 1994, ‘Test of a Phased Array Sodar by Intercomparison with Tower Data’, J. Atmos. Ocean. Technol. 11, 14–102.Google Scholar
  114. White, A. B. and Fairall, C. W.: 1995, ‘Wind Profiler Measurements of Scalar and Velocity Microturbulence in the Convective Atmospheric Boundary Layer’, Preprints, Eleventh Symposium on Boundary Layers and Turbulence, Charlotte, North Carolina, pp. 548–551.Google Scholar
  115. White, A. B., Fairall, C. W., Frisch, A. S., Orr, B. W., and Snider, J. B.: 1995a, ‘Recent Radar Measurements of Turbulence and Microphysical Parameters in Marine Boundary Layer Clouds’, Atmos. Res., in press.Google Scholar
  116. White, A. B., Fairall, C. W., and Snider, J. B.: 1995b, ‘Surface-Based Remote Sensing of Marine Boundary-Layer Cloud Properties’, J. Atmos. Sci. 52, 2827–2838.Google Scholar
  117. Whiteman, C. D. and Bian, X.: 1994, ‘Semidurnal Solar Tides in the Mountain Atmosphere’, Proc., 23rd Conf. on Alpine Meteorology (Lindau, Germany), Deutsche Wetterdienst, Offenbach, Germany.Google Scholar
  118. Whiteman, D. N., Melfi, S. H., and Ferrare, R. A.: 1992, ‘Raman Lidar System for the Measurement of Water Vapour and Aerosols in the Earth's Atmosphere’, Appl. Opt. 31, 3068–3082.Google Scholar
  119. Wilczak, J. M., Christian, T. W., Wolfe, D. E., Zamora, R. J., and Stankov, B.: 1992, ‘Observations of a Colorado Tornado. Part I: Mesoscale Environment and Tornadogenesis’, Mon. Wea. Rev. 120, 497–520.Google Scholar
  120. Wilczak, J. M., Strauch, R. G., Ralph, F. M., Weber, B. L., Merritt, D. A., Jordan, J. R., Wolfe, D. E., Lewis, L. K., Wuertz, D. B., Gaynor, J. E., McLaughlin, S. A., Rogers, R. R., Riddle, A. C., and Dye, T. S.: 1995, ‘Contamination of Wind Profiler Data by Migrating Birds: Characteristics of Corrupted Data and Potential Solutions’, J. Atmos. Ocean. Technol. 12, 449–467.Google Scholar
  121. Willis, G. E. and Deardorff, J. W.: 1976, ‘A Laboratory Model of Diffusion into the Convective Planetary Boundary’, Quart. J. Roy. Meteorol. Soc. 102, 427–445.Google Scholar
  122. Wilson, D. and Miller, L. J.: 1972, ‘Atmospheric Motion by Doppler Radar’, in V. E. Derr (ed.), Remote Sensing of the Atmosphere, (chaps. 21a, 27a) 27 pp.Google Scholar
  123. Wilson, J. W.: 1986, ‘Tornadogenesis by Nonprecipitation Induced Wind Shear Lines’, Mon. Wea. Rev. 114, 270–284.Google Scholar
  124. Wilson, J. W. and Schreiber, W. E.: 1986, ‘Initiation of Convective Storms at Radar-Observed Boundary-Layer Convergence Lines’, Mon. Wea. Rev. 114, 2516–2536.Google Scholar
  125. Wilson, J. W., Weckwerth, T. M., Vivekanandan, J., Wakimoto, R. M., and Russell, R. W.: 1994, ‘Boundary Layer Clear-Air Radar Echoes: Origin of Echoes and Accuracy of Derived Winds’, J. Atmos. Ocean. Technol. 11, 1184–1206.Google Scholar
  126. Wulfmeyer, V. M., Bösenberg, J., Lehmann, S., and Senff, C.: 1995, ‘Injection-Seeded Alexandrite Ring Laser: Performance and Application in a Water-Vapour Differential Absorption Lidar’, Opt. Lett. 20, 638–640.Google Scholar
  127. Wyngaard, J. and Kosovic, B.: 1994, ‘Similarity of Structure-Function Parameters in the Stably Stratified Boundary Layer’, Boundary-Layer Meteorol. 71, 277–296.Google Scholar
  128. Zhao, Y.: 1994, ‘Demonstration of a New and Innovative Ozone Lidar's Capability to Measure Vertical Profiles of Ozone Concentration and Aerosol in the Lower Troposphere’, NTIS No. PB95251831, Final Report Contract No. 92–328, California Environmental Protection Agency, Sacramento, California, 106 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. M. Wilczak
    • 1
  • E. E. Gossard
    • 1
  • W. D. Neff
    • 1
  • W. L. Eberhard
    • 1
  1. 1.National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology LaboratoryBoulderUSA

Personalised recommendations