Boundary-Layer Meteorology

, Volume 78, Issue 3–4, pp 215–246

Review of some basic characteristics of the atmospheric surface layer

  • Ulf Högström
Article

Abstract

Some of the fundamental issues of surface layer meteorology are critically reviewed. For the von Karman constant (k), values covering the range from 0.32 to 0.65 have been reported. Most of the data are, however, found in a rather narrow range between 0.39 and 0.41. Plotting all available atmospheric data against the so-called roughness Reynolds number, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabw% gadaWgaaWcbaGaaeimaaqabaGccqGH9aqpcaWG1bWaaSbaaSqaaiaa% cQcaaeqaaOGaamOEamaaBaaaleaacaaIWaaabeaakiaac+cacqaH9o% GBaaa!3FD0!\[{\rm{Re}}_{\rm{0}} = u_* z_0 /\nu \] or against the surface Rossby number, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaab+% gadaWgaaWcbaGaaeimaaqabaGccqGH9aqpcaWGhbGaai4laiaadAga% caWG6bWaaSbaaSqaaiaaicdaaeqaaaaa!3DF1!\[{\rm{Ro}}_{\rm{0}} = G/fz_0 \] gives no clear indication of systematic trend. It is concluded that k is indeed constant in atmospheric surface-layer flow and that its value is the same as that found for laboratory flows, i.e. about 0.40.

Various published formulae for non-dimensional wind and temperature profiles, Φm and Φh respectively, are compared after adjusting the fluxes so as to give % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2% da9iaaicdacaGGUaGaaGinaiaaicdaaaa!3AC6!\[k = 0.40\] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaii% GacqWFgpGzdaWgaaWcbaGaamiAaaqabaGccaGGVaGae8NXdy2aaSba% aSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaadQhaca% GGVaGaamitaiabg2da9iaaicdaaeqaaOGaeyypa0JaaGimaiaac6ca% caaI5aGaaGynaaaa!4655!\[\left( {\phi _h /\phi _m } \right)_{z/L = 0} = 0.95\]. It is found that for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWabeaaca% WG6bGaai4laiaadYeaaiaawEa7caGLiWoacqGHKjYOcaaIWaGaaiOl% aiaaiwdaaaa!3F72!\[\left| {z/L} \right| \le 0.5\] the various formulae agree to within 10–20%. For unstable stratification the various formulations for Φh continue to agree within this degree of accuracy up to at least % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaac+% cacaWGmbGaeyisISRaeyOeI0IaaGOmaaaa!3BC9!\[z/L \approx - 2\]. For Φm in very unstable conditions results are still conflicting. Several recent data sets agree that for unstable stratification % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabM% gacqGHijYUcaaIXaGaaiOlaiaaiwdacaWG6bGaai4laiaadYeaaaa!3E0D!\[{\rm{Ri}} \approx 1.5z/L\] up to at least % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam% OEaiaac+cacaWGmbGaeyypa0JaaGimaiaac6cacaaI1aaaaa!3C8D!\[ - z/L = 0.5\] and possibly well beyond.

For the Kolmogorov streamwise inertial subrange constant, αu, it is concluded from an extensive data set that % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS% baaSqaaiaadwhaaeqaaOGaeyypa0JaaGimaiaac6cacaaI1aGaaGOm% aiabgglaXkaaicdacaGGUaGaaGimaiaaikdaaaa!4178!\[\alpha _u = 0.52 \pm 0.02\]. The corresponding constant for temperature is much more uncertain, its most probable value being, however, about 0.80, which is also the most likely value for the corresponding constant for humidity.

The turbulence kinetic energy budget is reviewed. It is concluded that different data sets give conflicting results in important respects, particularly so in neutral conditions.

It is demonstrated that the inertial-subrange method can give quite accurate estimates of the fluxes of momentum, sensible heat and water vapour from high frequency measurements of wind, temperature and specific humidity alone, provided ‘apparent’ values of the corresponding Kolmogorov constants are used. For temperature and humidity, the corresponding values turn out to be equal to the ‘true’ constants, so % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS% baaSqaaiaadgeaaeqaaOGaeyisISRaeqOSdiMaeyisISRaaGimaiaa% c6cacaaI4aGaaGimaaaa!4074!\[\beta _A \approx \beta \approx 0.80\]. For momentum, however, the apparent constant % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS% baaSqaaiaadwhacaWGbbaabeaakiabgIKi7kaaicdacaGGUaGaaGOn% aiaaicdaaaa!3E18!\[\alpha _{uA} \approx 0.60\].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley, E. F., Antonia, R. A., and Chambers, A. J.: 1981, ‘Turbulence Reynolds Number and the Turbulent Kinetic Energy Balance in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 21, 183–197.Google Scholar
  2. Brutsaert, W.: 1992, ‘Stability Correlation Functions for the Mean Wind Speed and Temperature in the Unstable Surface Layer’, Geophys. Res. Letters 19, 469–472.Google Scholar
  3. Businger, J. A.: 1973, ‘A Note on Free Convection’, Boundary-Layer Meteorol. 4, 323–326.Google Scholar
  4. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.Google Scholar
  5. Carl, D. M., Tarbell, T. C., and Panofsky, H. A.: 1973, ‘Profiles of Wind and Temperature from Towers over Homogeneous Terrain’, J. Atmos. Sci. 30, 788–794.Google Scholar
  6. Deacon, E. L.: 1988, ‘The Streamwise Kolmogoroff Constant’, Boundary-Layer Meteorol. 42, 9–17.Google Scholar
  7. Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.Google Scholar
  8. Dyer, A. J., and Bradley, E. F.: 1982, ‘An Alternative Analysis of Flux-Gradient Relationships at the 1976 ITCE’, Boundary-Layer Meteorol. 22, 3–19.Google Scholar
  9. Dyer, A. J. and Hicks, B. B.: 1970, ‘Flux-Gradient Relationships in the Constant Flux Layer’, Quart. J. Roy. Meteorol. Soc. 96, 715–721.Google Scholar
  10. Edson, J. B., Fairall, C. W., Mestayer, P. G., and Larsen, S. E.: 1991, ‘A Study of the Inertial-Dissipation Method for Computing Air-Sea Fluxes’, J. Geophys. Res. 96(C6), 10,689–10,711.Google Scholar
  11. Foken, T. and Skeib, G.: 1983, ‘Profile Measurements in the Atmospheric Near-Surface Layer and the Use of Suitable Universal Functions for the Determination of the Turbulent Energy Exchange’, Boundary-Layer Meteorol. 25, 55–62.Google Scholar
  12. Frenzen, P. and Vogel, C. A.: 1992, ‘The Turbulent Kinetic Energy Budget in the Atmospheric Surface Layer: A Review and an Experimental Reexamination in the Field’, Boundary-Layer Meteorol. 60, 49–76.Google Scholar
  13. Frenzen, P. and Vogel, C. A.: 1995, ‘On the Magnitude and Apparent Range of Variation of the von Karman Constant in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 72, 371–392.Google Scholar
  14. Garratt, J. R.: 1977, ‘Review of Drag Coefficients over Oceans and Continents’, Mon. Wea. Rev. 105, 915–928.Google Scholar
  15. Garratt, J. R. and Hicks, B. B.: 1990, ‘Micrometeorological and PBL Experiments in Australia’, Boundary-Layer Meteorol. 50, 11–29.Google Scholar
  16. Gibson, M. M. and Launder, B. E.: 1978, ‘Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer’, J. Fluid Mech. 86, 491–511.Google Scholar
  17. Grelle, A. and Lindroth, A.: 1994, ‘Flow Distortion by a Solent Anemometer: Wind Tunnel Calibration and its Assessment for Flux Measurements over Forest and Field’, J. Atmos. Ocean. Technol. 11, 1529–1542.Google Scholar
  18. Gryning, S.-E.: 1993, ‘Wind, Turbulence and Boundary Layer Height over Kattegat’, Marine Research Report from the Danish Environmental Board (in Danish), No 21, 57 pp.Google Scholar
  19. Högström, U.: 1982, ‘A Critical Evaluation of the Aerodynamical Error of a Turbulence Instrument’, J. Appl. Meteorol. 21, 1838–1844.Google Scholar
  20. Högström, U.: 1985, ‘Von Karman's Constant in Atmospheric Boundary Layer Flow: Re-evaluated’, J. Atmos. Sci. 42, 55–78.Google Scholar
  21. Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 42, 263–270.Google Scholar
  22. Högström, U.: 1990: ‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Formulation for Near Neutral Conditions’, J. Atmos. Sci. 47, 1949–1972.Google Scholar
  23. Högström, U.: 1992, ‘Further Evidence of ‘Inactive’ Turbulence in the Near Neutral Atmospheric Surface Layer’, Tenth Symposium on Turbulence and Diffusion, 29 Sept.–2 Oct., 1992, Portland, Oregon, USA, pp. 188–1191.Google Scholar
  24. Kader, B. A. and Perpelkin, V. G.: 1984, ‘Profiles of the Wind Velocity and Temperature in the Near-Surface Layer of the Atmosphere under Conditions of Neutral and Unstable Stratification’, Izvestiya, Atmospheric and Oceanic Physics 20, 112–119 (English translation).Google Scholar
  25. Kader, B. A. and Yaglom, A. M.: 1990, ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’, J. Fluid Mech. 212, 637–661.Google Scholar
  26. Kondo, J. and Sato, T.: 1982, ‘The Determination of the von Karman Constant’, J. Meteorol. Soc. Japan 60, 461–470.Google Scholar
  27. Lumley, J. L. and Panofsky, H. A.: 1964, The Structure of Atmospheric Turbulence, Interscience, New York, 239 pp.Google Scholar
  28. McBean, G. A. and Elliott, J. A.: 1975, ‘The Vertical Transport of Kinetic Energy by Turbulence and Pressure in the Boundary Layer’, J. Atmos. Sci. 32, 753–766.Google Scholar
  29. Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, Volume 1, English translation. The MIT Press, Cambridge, Massachusetts, USA, 769 pp.Google Scholar
  30. Monin, A. S. and Yaglom, A. M.: 1975, Statistical Fluid Mechanics, Volume 2, English translation. The MIT Press, Cambridge, Massachusetts, USA, 874 pp.Google Scholar
  31. Mortensen, N. G., Larsen, S. E., Troen, I. and Mikkelsen, T.: 1987, ‘Two-Years-Worth of Turbulence Data Recorded by a Sonic-Anemometer-Based Data Acquisition System’, Proc. Sixth Symp. Meteorol. Observations and Instrumentation, 12–16 January, 1987, New Orleans, La., USA, pp. 393–396.Google Scholar
  32. Oncley, S. P., Itsweire, E. C., Friehe, C. A., LaRue, J. C., and Chang, S. S.: 1990, ‘Surface Layer Profiles and Turbulence Measurements over Uniform Land under Near-Neutral Conditions’, Ninth Symposium on Turbulence and Diffusion, 30 April–3 May, 1990, Roskilde, Denmark, pp. 237–240.Google Scholar
  33. Oncley, S. P.: 1992, ‘TKE Dissipation Measurements During the FLAT Experiment’, Tenth Symposium on Turbulence and Diffusion, 29 Sept.–2 Oct., 1992, Portland, Oregon, USA, pp. 165–166.Google Scholar
  34. Oncley, S. P., Horst, T. W., and Praskovsky, A.: 1995, ‘The TKE Budget from the FLAT Experiment’. 11th Symposium on Boundary Layers and Turbulence, Charlotte, NC, March 27–31, 1995, pp. 5–8.Google Scholar
  35. Parlange, M. B. and Brutsaert, W.: 1993, ‘Regional Shear Stress of Broken Forest from Radiosonde Wind Profiles in the Unstable Surface Layer’, Boundary-Layer Meteorol. 64, 355–368.Google Scholar
  36. Parlange, M. B. and Katul, G. G.: 1995, ‘Watershed Scale Stress from Tethersonde Wind Profile Measurements under Near Neutral and Unstable Atmospheric Stability’, Water Resources Res. 31, 961–968.Google Scholar
  37. Praskovsky, A. and Oncley, S.: 1994, ‘Measurements of the Kolmogorov Constant and Intermittency Exponent at Very High Reynolds Numbers’, Phys. Fluids 6, 2886–2888.Google Scholar
  38. Pruitt, W. O., Morgan, D. L., and Lourence, F. J.: 1973, ‘Momentum and Mass Transfers in the Surface Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 370–386.Google Scholar
  39. Purtell, L. P., Klebanoff, P. S., and Buckley, F. T.: 1981, ‘Turbulent Boundary Layer at Low Reynolds Number’, Phys. Fluids 24, 802–811.Google Scholar
  40. Raupach, M. R.: 1978, ‘Infrared Fluctuation Hygrometry in the Atmospheric Surface Layer’, Quart. J. Roy. Meteorol. Soc. 104, 309–322.Google Scholar
  41. Raupach, M. R.: 1981, ‘Conditional Statistics of Reynolds Stress in Rough-Wall and Smooth-Wall Boundary Layers’, J. Fluid Mech. 108, 363–382.Google Scholar
  42. Raupach, M. R., Coppin, P. A., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion within a Plant Canopy, Part I: The Turbulence Structure’, Boundary-Layer Meteorol. 35, 21–52.Google Scholar
  43. Raupach, M. R., Antonia, R. A., and Rajagopalan, S.: 1991, ‘Rough-Wall Turbulent Boundary Layers’, Appl. Mech. Rev. 44, 1–25.Google Scholar
  44. Schacher, G. E., Davidson, K. L., Houlian, T., and Fairall, C. W.: 1981, ‘Measurements of the Rate of Dissipation of Turbulent Kinetic Energy, ε, over the Ocean’, Boundary-Layer Meteorol. 20, 321–330.Google Scholar
  45. Schuman, U.: 1988, ‘Minimum Friction Velocity and Heat Transfer in the Rough Surface Layer of a Convective Boundary Layer’, Boundary-Layer Meteorol. 44, 311–326.Google Scholar
  46. Smedman, A.-S. and Lundin, K.: 1987, ‘Influence of Sensor Configuration on Measurements of Dry and Wet Bulb Temperature Fluctuations’, J. Atmos. Oceanic Techn. 4, 668–673.Google Scholar
  47. Sugita, M., Hiyama, T., Endo, N., and Tian, S.: 1995, ‘Flux Determination over a Smooth Surface Under Strongly Unstable Conditions’, Boundary-Layer Meteorol. 73, 145–158.Google Scholar
  48. Swinbank, W. C.: 1974, ‘The Geostrophic Drag Coefficient’, Boundary-Layer Meteorol. 7, 125–127.Google Scholar
  49. Sykes, R. I., Henn, D. S., and Lewellen, W. S.: ‘Surface Layer Description under Free Convection Conditions’, Quart. J. Roy. Meteorol. Soc. 119, 409–421.Google Scholar
  50. Tennekes, H.: 1968, ‘Outline of a Second-Order Theory for Turbulent Pipe Flow’, AIAA Journal 6, 1735.Google Scholar
  51. Tennekes, H.: 1973, ‘The Logarithmic Wind Profile’, J. Atmos. Sci. 30, 234–238.Google Scholar
  52. Townsend, A. A.: 1961, ‘Equilibrium Layers and Wall Turbulence’, J. Fluid Mech. 11, 97–120.Google Scholar
  53. Webb, E. K.: 1970, ‘Profile Relationships: The Log-Linear Range, and Extension to Strong Stability’, Quart. J. Roy. Meteorol. Soc. 96, 67–90.Google Scholar
  54. Webb, E. K.: 1982, ‘Profile Relationships in the Superadiabatic Surface Layer’, Quart. J. Roy. Meteorol. Soc. 108, 661–688.Google Scholar
  55. Wieringa, J.: 1980, ‘A Reevaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding’, Boundary-Layer Meteorol. 18, 411–430.Google Scholar
  56. Wieringa, J.: 1993, ‘Representative Roughness Parameters for Homogeneous Terrain’, Boundary-Layer Meteorol. 63, 323–364.Google Scholar
  57. Wilczak, J. M.: 1984, ‘Large-Scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part I: Velocity and Temperature Structure’, J. Atmos. Sci. 41, 3537–3550.Google Scholar
  58. Wilczak, J. M. and Businger, J. A.: 1984, ‘Large-Scale Eddies in the Unstably Stratified Atmospheric Surface Layer, Part II: ‘Turbulent Pressure Fluctuations and the Budgets of Heat Flux, Stress and Turbulent Kinetic Energy’’, J. Atmos. Sci. 41, 3551–3567.Google Scholar
  59. Williams, R. M.: 1974, ‘High Frequency Temperature and Velocity Fluctuations in the Atmospheric Boundary Layer’, Ph.D. Thesis, Oregon State University, School of Oceanography.Google Scholar
  60. Wyngaard, J. C. and Coté, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.Google Scholar
  61. Wyngaard, J. C. and Clifford, S. F.: 1977, ‘Taylor's Hypothesis and High-Frequency Turbulence Spectra’, J. Atmos. Sci. 34, 922–929.Google Scholar
  62. Yaglom, A. M.: 1977, ‘Comments on Wind and Temperature Flux-Profile Relationships’, Boundary-Layer Meteorol. 11, 89–102.Google Scholar
  63. Yaglom, A. M.: 1979, ‘Similarity Laws for Constant-Pressure and Pressure-Gradient Turbulent Wall Flows’, Ann. Rev. Fluid Mech. 11, 505–540.Google Scholar
  64. Yaglom, A. M.: 1981, ‘Laws of Small-Scale Turbulence in Atmosphere and ocean (In Commemoration of the 40th Anniversary of the Theory of Locally Isotropic Turbulence)’, Izvestiya, Atmospheric and Oceanic Physics 17, 919–935 (English translation).Google Scholar
  65. Yakhot, V. and Orszag, S. A.: 1986, ‘Renormalization-Group Analysis of Turbulence’, Phys. Rev. Lett. 57, 1722–1724.Google Scholar
  66. Zilitinkevich, S. S. and Chailikov, D. V.: 1968, ‘Determining the Universal Wind-Velocity and Temperature Profiles in the Atmospheric Boundary Layer’, Izvestiya, Atmospheric and Oceanic Physics 4, 165–170 (English translation).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Ulf Högström
    • 1
  1. 1.Department of MeteorologyUppsala UniversityUppsalaSweden

Personalised recommendations