Boundary-Layer Meteorology

, Volume 59, Issue 1–2, pp 195–203

Impact of density fluctuations on flux measurements of trace gases: Implications for the relaxed eddy accumulation technique

  • E. Pattey
  • R. L. Desjardins
  • F. Boudreau
  • P. Rochette
Research Notes

Abstract

A simple and fast approach to determine when density fluctuations are non-negligible in the calculation of the flux of trace gases (Fc) is proposed. The correction (FcFc(raw)), when expressed as the percentage of the flux, is dependent on the ratio of background concentration of the trace gas over its flux (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabeg% 8aYnaaBaaaleaacaWGJbaabeaakiaab+cacaWGgbWaaSbaaSqaaiaa% dogaaeqaaOGaaeykaaaa!3CBC!\[{\rm{(}}\rho _c {\rm{/}}F_c {\rm{)}}\], on the partitioning of available energy between sensible (FT) and latent (Fv) heat fluxes, and on the flux measuring system. An increase from 100 to 200 W m-2 in available energy and from 0 to 20% in FT/(FT + Fv) led to a threefold reduction in the required value of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaacq% aHbpGCdaWgaaWcbaGaam4yaaqabaaaaOGaai4laiaadAeadaWgaaWc% baGaam4yaaqabaaaaa!3B6D!\[\overline {\rho _c } /F_c \] to have a density correction of 10%. A trace gas with a % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaceaaca% WGgbWaaSbaaSqaaiaadogaaeqaaaGccaGLhWUaayjcSdGaai4lamaa% naaabaGaeqyWdi3aaSbaaSqaaiaadogaaeqaaaaaaaa!3E91!\[\left| {F_c } \right|/\overline {\rho _c } \] value above 0.014 m s-1 has a density correction on flux of less than 10%, for even the worst case scenario. Values of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa% aaleaacaWGJbaabeaakiaac+cadaqdaaqaaiabeg8aYnaaBaaaleaa% caWGJbaabeaaaaaaaa!3B6D!\[F_c /\overline {\rho _c } \] for several trace gases computed from typical situations show that the fluxes of N2O, NO, CO2, CH4 and O3 need to be corrected, while those of pesticides and volatile organic compounds, for example, do not. The corrections required with the newly developed relaxed eddy accumulation technique are discussed and equation development is shown for two sampling systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakan, S.: 1978, ‘Note on the Eddy Correlation Method for CO2 Flux Measurements’, Boundary-Layer Meteorol. 14, 597–600.Google Scholar
  2. Businger, J. A. and Oncley, S. P.: 1990, ‘Flux Measurement with Conditional Sampling’, J. Atmos. Ocean. Tech. 7, 349–352.Google Scholar
  3. Delany, A. C., Oncley, S. P., and Businger, J. A.: 1991, ‘Adapting the Conditional Sampling Concept for a Range of Different Chemical Species’, Proceeding of the Seventh AMS Symposium on Meteorological Observations and Instrumentation, New Orleans, La., January 14–18, pp. 22–25.Google Scholar
  4. Desjardins, R. L.: 1972, ‘A Study of Carbon-Dioxide and Sensible Heat Fluxes Using the Eddy Correlation Technique’, Ph.D. dissertation, Cornell University, 189 pp.Google Scholar
  5. Jones, E. P. and Smith, S. D.: 1978, ‘The Air Density Correction to Eddy Flux Measurements’, Boundary-Layer Meteorol. 15, 357–360.Google Scholar
  6. Lamb, B., Westberg, H., and Allwine, G.: 1985, ‘Biogenic Hydrocarbon Emissions from Deciduous and Coniferous Trees in the United States’, J. Geophys. Res. 90, 2380–2390.Google Scholar
  7. MacPherson, J. I. and Desjardins, R. L.: 1991, ‘Airborne Tests of Flux Measurement by the Relaxed Eddy Accumulation Technique’, Proceeding of the Seventh AMS Symposium on Meteorological Observations and Instrumentation, New Orleans, La., January 14–18, pp. 6–11.Google Scholar
  8. Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 666 pp.Google Scholar
  9. Webb, E. K., Pearman, G. I., and Leuning, R.: 1980, ‘Correction of Flux Measurements for Density Effects Due to Heat and Water Vapor Transfer’, Quart. J. R. Meteorol. Soc. 106, 85–100.Google Scholar
  10. Wesely, M. L., Lenschow, D. H., and Denmead, O. T.: 1989, ‘Flux Measurements Techniques’, in: D. H. Lenschow and B. B. Hicks (eds.), ‘Global Tropospheric Chemistry’, Report of the Workshop on Measurements of Surface Exchange and Flux Divergence of Chemical Species in the Global Atmosphere, May 1989, Columbia University, NY, pp. 31–46.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • E. Pattey
    • 1
  • R. L. Desjardins
    • 1
  • F. Boudreau
    • 2
  • P. Rochette
    • 1
  1. 1.Research Branch, Agriculture CanadaLand Research Resource CentreOttawaCanada
  2. 2.Department of Chemical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations