Advertisement

Journal of Global Optimization

, Volume 1, Issue 1, pp 1–14 | Cite as

Bayesian methods in global optimization

  • Bruno Betrò
Article

Abstract

This paper reviews methods which have been proposed for solving global optimization problems in the framework of the Bayesian paradigm.

Keywords

Bayesian inference stochastic processes decision theory stopping rules multistart method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R. J. (1981), The Geometry of Random Fields, Wiley, New York.Google Scholar
  2. 2.
    Archetti, F. and B. Betrò (1978), A Priori Analysis of Deterministic Strategies for Global Optimization, in Dixon, L. C. W. and G. P. Szegö (eds.), Towards Global Optimization II, North Holland, Amsterdam.Google Scholar
  3. 3.
    Archetti, F. and B. Betrò (1979), A Probabilistic Algorithm for Global Optimization, Calcolo 16, 335–343.Google Scholar
  4. 4.
    Berger, J. O. (1980), Statistical Decision Theory, Springer, Berlin.Google Scholar
  5. 5.
    Betrò, B. (1984), Bayesian Testing of Nonparametric Hypotheses and Its Application to Global Optimization, Journal of Optimization Theory and Applications 42, 31–50.Google Scholar
  6. 6.
    Betrò, B. and F. Schoen (1986), Una Tecnica Stocastica per l'Ottimizzazione Globale, in Bielli, M. (ed.), Ricerca Operative e Informatica, F. Angeli, Milano.Google Scholar
  7. 7.
    Betrò, B. and F. Schoen (1987), Sequential Stopping Rules for the Multistart Algorithm in Global Optimization, Mathematical Programming 38, 271–286.Google Scholar
  8. 8.
    Betrò, B. and F. Schoen (1988), Optimal and Suboptimal Stopping Rules for the Multistart Method in Global Optimization. IAMI 88.11, CNR-IAMI, Milano.Google Scholar
  9. 9.
    Betrò, B. and R. Zieliński (1987), A Monte Carlo Study of a Bayesian Decision Rule Concerning the Number of Different Values of a Discrete Random Variable, Communications in Statistics-Simulation and Computation 16, 925–938.Google Scholar
  10. 10.
    Boender, C. G. E. and A. H. G. Rinnooy Kan (1983), A Bayesian Analysis of the Number of Cells of a Multinomial Distributions, The Statistician 32, 240–248.Google Scholar
  11. 11.
    Boender, C. G. E. and A. H. G. Rinnooy Kan (1987), Bayesian Stopping Rules for Multistart Global Optimization Methods, Mathematical Programming 37, 59–80.Google Scholar
  12. 12.
    Boender, C. G. E. and R. Zieliński (1985), A Sequential Bayesian Approach to Estimating the Dimension of a Multinomial Distribution, Banach Center Publications, 16, Warsaw.Google Scholar
  13. 13.
    DeGroot, M. H. (1970), Optimal Statistical Decisions, McGraw-Hill, New York.Google Scholar
  14. 14.
    Dixon, L. C. W. and G. P. Szegö (eds.) (1978), Towards Global Optimization II, North Holland, Amsterdam.Google Scholar
  15. 15.
    Doksum, K. (1974), Tailfree and Neutral Random Probabilities and Their Posterior Distributions, Annals of Probability 2, 183–201.Google Scholar
  16. 16.
    Ferguson, T. S. (1973), A Bayesian Analysis of Some Nonparametric Problems, Annals of Statistics 1, 209–230.Google Scholar
  17. 17.
    Ferguson, T. S. (1974), Prior Distributions on Spaces of Probability Measures, Annals of Statistics 2, 615–629.Google Scholar
  18. 18.
    Ferguson, T. S. and E. G. Phadia (1979), Bayesian Nonparametric Estimation Based on Censored Data, Annals of Statistics 7, 163–186.Google Scholar
  19. 19.
    Gikhman, I. I. and A. V. Skorohod (1974), The Theory of Stochastic Processes, Springer, Berlin.Google Scholar
  20. 20.
    Gordon, W. J. and J. A. Wixom (1978), Shepard's Method of Metric Interpolation to Bivariate and Multivariate Interpolation, Mathematics of Computations 32, 253–264.Google Scholar
  21. 21.
    Johnson, N. L. and S. Kotz (1976), Distributions in Statistics: Continuous Multivariate Distributions, Wiley, New York.Google Scholar
  22. 22.
    Kushner, H. (1962), A Versatile Stochastic Model of a Function of Unknown and Time Varying Form, J. of Mathematical Analysis and Applications 9, 379–388.Google Scholar
  23. 23.
    Mockus, J. (1975), On Bayesian Methods of Optimization, in Dixon, L. C. W. and G. P. Szegö (eds.), Towards Global Optimization, North Holland, Amsterdam.Google Scholar
  24. 24.
    Mockus, J. (1980), The Simple Bayesian Algorithm for the Multidimensional Global Optimization, in Archetti, F. and M. Cugiani (eds.), Numerical Techniques for Stochastic Systems, North Holland, Amsterdam.Google Scholar
  25. 25.
    Mockus, J., V. Tiešis, and A. Žilinskas (1978), The Application of Bayesian Methods for Seeking the Extremum, in Dixon, L. C. W. and G. P. Szegö (eds.), Towards Global Optimization II, North Holland, Amsterdam.Google Scholar
  26. 26.
    Piccioni, M. and A. Ramponi (1990), Stopping Rules for the Multistart Method When Different Local Minima Have Different Function Values, Optimization 21, 697–707.Google Scholar
  27. 27.
    Strongin, R. G. (1989), The Information Approach to Multiextremal Optimization Problems, Stochastics and Stochastics Reports 27, 65–82.Google Scholar
  28. 28.
    Zieliński, R. (1981), A Statistical Estimate of the Structure of Multiextremal Problems, Mathematical Programming 21, 348–356.Google Scholar
  29. 29.
    Žilinskas, A. (1978), On Statistical Models for Multimodal Optimization, Math. Operationsforsch., Ser. Statistics 9, 255–266.Google Scholar
  30. 30.
    Žilinskas, A. (1978), Optimization of One-Dimensional Multimodal Functions, Algorithm AS133, Applied Statistics 27, 367–375.Google Scholar
  31. 31.
    Žilinskas, A. (1981), On Multimodal Minimization Algorithm Constructed Axiomatically, Methods of Operations Research 40, 197–200.Google Scholar
  32. 32.
    Žilinskas, A. (1981), Two Algorithms for One-Dimensional Multimodal Optimization, Math. Operationsforsch., Ser. Optimization 12, 53–63.Google Scholar
  33. 33.
    Žilinskas, A. (1982), Axiomatic Approach to Statistical Models and Their Use in Multimodal Optimization Theory, Mathematical Programming 22, 104–116.Google Scholar
  34. 34.
    Žilinskas, A. (1985), Axiomatic Characterization of a Global Optimization Algorithm and Investigation of Its Search Strategy, Operations Research Letters 4, 35–39.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Bruno Betrò
    • 1
  1. 1.CNR-IAMIMilanoItaly

Personalised recommendations