Advertisement

New Forests

, Volume 6, Issue 1–4, pp 347–371 | Cite as

Allozyme markers in forest genetic conservation

  • C. I. Millar
  • R. D. Westfall
Review paper Application of biochemical markers in forest management

Abstract

Genetic diversity is important in tree-breeding, in managing rare and endangered tree species, and in maintaining healthy populations of widespread native tree species. Allozymes are useful in determining genetic relationships among species, where they can be used to assess affiliations of rare taxa and predict relative endangerment among species. Because allozymes sometimes yield different information about genetic variation within species than revealed by other traits, when estimates of total or adaptive genetic variation are important, allozymes are best used in conjunction with other traits. Allozymes are useful for measuring direct allelic diversity when designing ex-situ and in-situ conservation strategies. We demonstrate an application of canonical trend-surface analysis for determining locations of in-situ genetic conservation areas. Allozymes also serve as useful markers in monitoring the effects of forest management and other environmental changes on genetic diversity.

Keywords

genetic diversity isozymes rare and endangered species in-situ conservation ex-situ conservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W. T. 1981. Population genetics and gene conservation in Pacific Northwest conifers, pp. 401–415. In: Scudder, G. G. and Reveal, J. L. (Eds) Evolution Today, Proceed. Second Internatl. Congr. Syst. Evol. Bio.Google Scholar
  2. Allard, R. W. 1970. Population structure and sampling methods, pp. 97–107. In: Frankel, O. H. and Bennett, E. (Eds) Genetic Resources in Plants — Their Exploration and Conservation. Blackwell, Oxford.Google Scholar
  3. Asins, M. J. and Carbonell, E. A. 1987. Concepts involved in measuring genetic variability and its importance in conservation of plant genetic resources. Evolutionary Trends in Plants 1(1): 51–62.Google Scholar
  4. Brown, A. H. D. 1978. Isozymes, plant population genetic structure, and genetic conservation. Theor. Appl. Genet. 52:145–157.Google Scholar
  5. Brown, A. H. D. and Briggs, J. D. 1991. Sampling strategies for genetic variation in ex-situ collections of endangered plant species, pp. 99–122. In: Falk, D. and Holsinger, K. (Eds) Genetics and Conservation of Rare Plants. Oxford Univ. Press, NY.Google Scholar
  6. Brown, A. H. D. and Moran, G. F. 1981. Isozymes and the genetic resources of forest trees, pp. 1–10. In: Conkle, M.T. (Ed.) Isozymes of North American Forest Trees and Forest Insects. USDA Forest Service, Gen. Tech. Rept. PSW-48.Google Scholar
  7. Brown, A. H. D. and Weir, B. S. 1983. Measuring genetic diversity in plant populations, pp. 219–238. In: Isozymes in Plant Genetics and Breeding. Part A. Elsevier.Google Scholar
  8. Burnham, C. R. 1988. The restoration of the American chestnut. Am. Sci. 76:478–487.Google Scholar
  9. Campbell, R. K. 1986. Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genet. 35(2–3):85–96.Google Scholar
  10. Conkle, M. T. 1987. Electrophoretic analysis of variation in native Monetary cypress (Cupressus macrocarpa), pp. 249–256. In: Elias, T. S. (Ed) Conservation and Management of Rare and Endangered Plants. California Native Plant Society, Sacramento.Google Scholar
  11. Conkle, M. T. 1992. Genetic diversity — seeing the forest through the trees. This issue (pp. 5–22).Google Scholar
  12. Conkle, M. T. and Westfall, R. D. 1984. Evaluating breeding zones for ponderosa pine in California, pp. 89–98. In: Proceedings of the Service-wide Genetics Workshop, Charleston, SC, Dec. 5–9,1983. USDA Forest Service.Google Scholar
  13. Conkle, M. T. and Westfall, R. D. 1988. Allozyme variation of white fir in the Sierra Nevada of California. Unpublished report to the U.S.F.S. Regional Tree Improvement Program. Pacific Southwest Region.Google Scholar
  14. Crossa, J. 1989. Methodologies for estimating the sample size required for genetic conservation of outbreeding crops. Theor. Appl. Genet. 77: 153–161.Google Scholar
  15. Crow, J. F. and M. Kimura. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.Google Scholar
  16. Dusek, K. H. 1985. Update on our rarest pine. Am. Forests: 26–29; 61–63.Google Scholar
  17. El-Kassaby, Y. A. 1990. Genetic variation within and among conifer populations: Review and evaluation of methods, pp. 59–74. In: Hattemer, H. H., Fineschi, S., Cannata, F. and Malvolti, M. E. (Eds) Biochemical Markers in the Population Genetics of Forest Trees. APB Academic Publ. bv, The Hague.Google Scholar
  18. Ellstrand, N. C. 1992. Gene flow among seed plant populations. This issue (pp. 241–256).Google Scholar
  19. Epperson, B. K. 1992. Spatial structure of genetic variation within populations of forest trees. This issue (pp. 257–258).Google Scholar
  20. Falk, D. A. 1990. Endangered forest resources in the U.S.: Integrated strategies for conservation of rare species and genetic diversity. For. Ecol. & Manage: 91–108.Google Scholar
  21. FAO 1975. Methodology of conservation of forest genetic resources. FAO/UNEP, Rome, 127 pp.Google Scholar
  22. Fins, L. and Libby, W. J. 1982. Population variation in Sequoiadendron: seed and seedling studies, vegetative propagation and isozyme variation. Silvae Genet. 31: 102–110.Google Scholar
  23. Frankel, O. H. 1977. Philosophy and strategy of genetic conservation in plants. Proceed. Third World Consultation on Forest Tree Breeding 1: 6–11.Google Scholar
  24. Frankel, O. H. and Soule, M. E. 1081. Conservation and Evolution. Cambridge Univ. Press, Cambridge.Google Scholar
  25. Friedman, S. T. and Adams, W. T. 1985. Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda). Theor. Appl. Genet. 69:609–615.Google Scholar
  26. Furnier, G. 1984. Population Genetic Structure of Jeffrey Pine. Ph.D. dissertation. Oregon State University, Corvallis.Google Scholar
  27. Godfrey, R. K. and Kurz, H. 1962. The Florida torreya destined for extinction. Science 136: 900–902.Google Scholar
  28. Gregorius, H. R. 1980. The probability of losing an allele when diploid genotypes are sampled. Biometrics 36:643–652.Google Scholar
  29. Guries, R. P. 1984. Genetic variation and population differentiation in forest trees, pp. 119–131. In: Lanner, R. M. (Ed) Proceed. Eight North American Forest Biology Workshop. July 30–August 1, 1984, Logan, Utah.Google Scholar
  30. Hagman, M. 1973. The Finnish standard stands for forestry research, pp. 67–78. In: Fowler, D. P. and Yeatman, C. W. (Eds) Proceed 13th Meeting of Committee on Forest Tree Breeding in Canada. Part 2, August 24–27, 1971. Prince George, British Columbia.Google Scholar
  31. Hamburg, S. P. and Coghill, C. V. 1988. Historical decline of red spruce populations and climatic warming. nature 331:428–431.Google Scholar
  32. Hamrick, J. L. 1976. Variation and selection in western montane species. II. Variation within and between populations of white fir on an elevational transect. Theor. Appl. Genet. 47(1):27–34.Google Scholar
  33. Hamrick, J. L., Godt, M. J. W. and Sherman-Broyles, S. L. 1992. Factors influencing levels of genetic diversity in woody plant species. This issue (pp. 95–124).Google Scholar
  34. Hamrick, J. L. and Godt, M. J. 1989. Allozyme diversity in plant species, pp. 43–63. In: Brown, H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Assoc., Sunderland, Mass.Google Scholar
  35. Hanover, J. W. 1992. Applications of terpene analysis in forest genetics. This issue (pp. 159–178).Google Scholar
  36. Harry, D. E. 1984. Genetic structure of incense-cedar (Calocedrus decurrens). University of California, Berkeley, Ph.D. dissertation, 163 pp.Google Scholar
  37. Kitzmiller, J. H. 1976. Tree Improvement Master Plan for the California Region. USDA Forest Service, San Francisco.Google Scholar
  38. Kitzmiller, J. H. 1990. Managing genetic diversity in a tree improvement program. For. Ecol. Manage. 13:131–150.Google Scholar
  39. Kinloch, B. B. 1972. Genetic variation in resistance to Cronartium and Peridermium rust in hard pines., pp. 445–462. In: Biology of rust resistance in forest trees. Proc. NATO-IUFRO Adv. Study Inst. Aug. 17–24,1969. USDA Misc. Pub. 1221. Washington, D.C.Google Scholar
  40. Krugman, S. L. 1984. Policies, strategies, and means for genetic conservation in forestry, pp. 71–78. In: Yeatman, C. W., Kafton, D. and Wilkes, G. (Eds) Plant genetic resources. A conservation imperative. Am. Assoc. Adv. Sci. Selected Symposium 87. Westview, Colorado.Google Scholar
  41. Lande, R. and Barrowclough, G. 1987. Effective population size, genetic variation, and their use in population management, pp. 87–124. In: Soule, M. E. (Ed) Viable Populations for Conservation. Cambridge Univ. Press, Cambridge.Google Scholar
  42. Ledig, F. T. 1986a. Conservation strategies for forest gene resources. For. Ecol. Manage. 14: 77–90.Google Scholar
  43. — 1986b. Heterozygosity, heterosis, and fitness in outbreeding plants, pp. 74–104. In: Soule, M. E. (Ed.) Conservation Biology: The Science of Scarcity and Diversity. Sinauer Assoc. Sunderland, Mass.Google Scholar
  44. — 1987. Genetic structure and the conservation of California's endemic and near-endemic conifers, pp. 587–594. In: Alias, T. S. (Ed) Conservation and Management of Rare and Endangered Plants. California Native Plant Society, Sacramento, California.Google Scholar
  45. — 1988a. The conservation of diversity in forest trees. Bioscience 38(7): 471–479.Google Scholar
  46. —. 1988b. Conservation of genetic diversity: The road to La Trinidad. Leslie Schaffer Lectureship in Forest Science, Oct. 27, 1988. Vancouver, British Colombia.Google Scholar
  47. — 1992. Human impacts on genetic diversity in forest ecosystems. Oikos 63: 87–108.Google Scholar
  48. Ledig, F. T. and Conkle, M. T. 1983. Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana). Evolution 37: 79–85.Google Scholar
  49. Lee, P. J. 1969. The theory and application of canonical trend surfaces. J. Geology 77(3): 303–318.Google Scholar
  50. Little, E. L. 1970. Names of the new world cypresses. Phytologia 20(7): 429–445.Google Scholar
  51. Loveless, M. D. 1992. Isozyme variation in tropical trees: patterns of genetic organization. This issue (pp. 67–94).Google Scholar
  52. Marshall, D. R. 1989. Crop genetic resources: Current and emerging issues, pp. 267–388. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. 1989. Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Assoc. Sunderland, Mass.Google Scholar
  53. Marshall, D. R. and Brown, A. H. D. 1975. Optimum sampling strategies in genetic conservation, pp. 53–80. In: Frankel, O. H. and Hawkes, J. G. (Eds) Crop Genetic Resources for Today and Tomorrow. Cambridge Univ. Press, Cambridge.Google Scholar
  54. Marshall, D. R. and Brown, A. H. D. 1981. Wheat genetic resources, pp. 21–40. In: Evans, L. T. and Peacock, W. J. (Eds) Cambridge Univ. Press, Cambridge.Google Scholar
  55. McDonald, J. F. 1983. The molecular basis of adaptation: A critical review of relevant ideas and observations. Annual Rev. Ecol. Syst. 14: 77–102.Google Scholar
  56. Menges, E. S. 1990a. Population viability analysis for an endangered plant. Conservation Biology 4(1):52–62.Google Scholar
  57. Menges, E. S. 1991. The application of minimum viable population theory to planqts. In: Falk, D. and Holsinger, K. (Eds) Genetics and Conservation of Rare Plants. Oxford Univ. Press, Cary NC.Google Scholar
  58. Millar, C. I. 1989. Allozyme variation of bishop pine associated with pygmy forest soils in northern California. Can. J. For. Res. 19: 870–879.Google Scholar
  59. Millar, C. I. and Critchfield, W. B. 1986. Crossability and relationships of Pinus muricata (Pinaceae). Madrono 35(1):39–53.Google Scholar
  60. Millar, C. I. and Libby, W. J. 1991. Strategies for conservation of clinal, ecotypic, and disjunct population diversity in widespread species. In: Falk, D. and Holsinger, K. (Eds) Genetics and Conservation of Rare Plants. Oxford Univ. Press, Cary, NC.Google Scholar
  61. Millar, C. I. and Marshall, K. A. 1991. Allozyme variation in Port-Oxford-cedar; Implications for genetic conservation. For. Sci. 37: 1060–1077.Google Scholar
  62. Millar, C. I., Strauss, S. H., Conkle, M. T. and Westfall, R. D. 1988. Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae). Syst. Bot. 13(3): 351–370.Google Scholar
  63. Miller, P. L. 1973. Oxidant-induced community change in a mixed conifer forest, pp. 101–117. In: Naegle, J. A. (Ed) Air pollution damage to vegetation. Adv. Chem. Ser. 122.Google Scholar
  64. Mitton, J. B. 1992. The dynamic mating systems of conifers. This issue (pp. 197–216).Google Scholar
  65. Mitton, J. B. and Grant, M. C. 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annual Rev. Ecol. Syst. 15: 479–499.Google Scholar
  66. Moran, G. F. and Hopper, S. D. 1983. Genetic diversity and the insular population structure of the rare granite rock species. Eucalyptus caesia. Aust. J. Bio. 31: 161–172.Google Scholar
  67. Moran, G. F. and Hopper, S. D. 1987. Conservation of the genetic resources of rare and widespread eucalypts in remnant vegetation, pp. 151–162. In: Saunders, D. A., Arnold, G. W., Burbidge, A. A. and Hopkins, A. J. M. (Eds) Nature Conservation: The Role of Remnants of Native Vegetation. Beatty, Australia.Google Scholar
  68. Moran, G. F. 1992. Patterns of genetic diversity in Australian tree species. This issue (pp. 49–66).Google Scholar
  69. Müller-Starck, G., Baradat, Ph. and Bergmann, F. 1992. Genetic variations within European tree species. This issue (pp. 23–47).Google Scholar
  70. Namkoong, G. 1984. Strategies for gene conservation in forest tree breeding. In: Yeatman, C. W., Kafton, D. and Wilkes, G. (Eds) Plant genetic resources. A conservation imperative. Am. Assoc. Adv. Sci. Selected Symposium 87. Westview, Colorado.Google Scholar
  71. Namkoong, G. 1986. Genetics and the forests of the future. Unasylva. 38: 2–18.Google Scholar
  72. Neale, D. B. 1985. Genetic implications of shelterwood regeneration of Douglas-fir in southwest Oregon. Forest Sci. 31(4): 995–1005.Google Scholar
  73. Niebling, C. R. and Conkle, M. T. 1990. Diversity of Washoe pine and comparisons with allozymes of ponderosa pine races. Can. J. For. Res. 20:298–308.Google Scholar
  74. Peeters, J. P. and Martinelli, J. A. 1989. Hierarchical cluster analysis as a tool to manage variation in germplasm collections. Theor. Appl. Genet. 78:42–48.Google Scholar
  75. Prober, S., Bell, J. C. and Moran, G. F. 1990a. A plylogenetic and allozyme approach to understanding rarity in three “green ash” eucalypts. Plant Syst. Evol. (in press).Google Scholar
  76. Prober, S. M., Tompkins, C., Moran, G. F., and Bell, J. C. 1990b. The conservation genetics of Eucalyptus paliformis and E. parvifolia, two rare species from south-eastern Australia. Aust. J. Bot. 38: 79–95.Google Scholar
  77. Rajora, O. P. 1988. Allozymes as aids for identification and differentiation of some Populus maximowiczii clonal varieties. Biochem. Syst. Ecol. 16: 635–640.Google Scholar
  78. Reiseberg, L. H. 1988. Saving California's rarest tree. Center for Plant Conservation Newsletter 3(1):1–8.Google Scholar
  79. Roos, E. E. 1988, Genetic changes in a collection over time. HortScience 23(1): 86–90.Google Scholar
  80. Shaffer, M. L. 1981. Minimum population sizes for species conservation. Bioscience 31: 131–134.Google Scholar
  81. Schnabel, A. and Hamrick, J. L. 1990. Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gambelii. Syst. Bot. 15(2): 240–251.Google Scholar
  82. Scholz, F., Gregorius, H. R. and Rudin, D. 1989. Genetic Effects of Air Pollutants in Forest Tree Populations. Springer Verlag.Google Scholar
  83. Sirkkomaa, S. 1983. Calculations on the decrease of genetic variation due to the founder effect. Hereditas 99: 11–20.Google Scholar
  84. Smouse, P. E. and Bush, R. M. 1992. Evidence for the adaptive significance of allozymes in forest trees. This issue (pp. 179–196).Google Scholar
  85. Sneath, P. H. A. and Sokai, R. R. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.Google Scholar
  86. Soule, M. E. (Ed) 1987. Viable Populations for Conservation. Cambridge Univ. Press, Cambridge.Google Scholar
  87. Strauss, S. H., Bousquet, J., Hipkins, V D. and Hong, Y.-P. 1992. Biochemical and molecular genetic markets in biosystematic studies of forest trees. This issue (pp. 125–158).Google Scholar
  88. USDA Forest Service. 1988. Eldorado National Forest Land and Resource Management Plan. Pacific Southwest Region.Google Scholar
  89. Westfall, R. D. 1991. Developing seed transfer zones, pp. 313–398. In: Fins, L. and Friedman S. T. (Eds) Quantitative Forest Genetic Handbook Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  90. Westfall, R. D. and Conckle, M. T. 1992. Allozyme markers in breeding zone designation. This issue (pp. 279–309).Google Scholar
  91. Wilson, B. C. 1990. Gene pool reserves of Douglas-fir. For. Ecol. Manage. 35:121–130.Google Scholar
  92. Wilson, E. O. (Ed) 1988. Biodiversity. National Academy of Sciences, Washington, DC.Google Scholar
  93. Wolf, C. B. 1948. The New World cypresses. Alisio. 1: 1–250.Google Scholar
  94. Zobel, B. 1977. Gene conservation — as viewed by a forest tree breeder. For. Manage. 1: 399–344.Google Scholar
  95. Zobel, D. B., L. F. Roth and Hawk, G. M. 1985. Ecology, pathology, and management of Post-Oxford-cedar (Chamaecyparis lawsoniana). USDA Forest Service, Gen. Tech. Rep. PNW-184.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • C. I. Millar
    • 1
  • R. D. Westfall
    • 1
  1. 1.Center for Conservation of Genetic Diversity, Institute of Forest GeneticsPacific Southwest Forest and Range Experiment Station, USDA Forest ServiceBerkeleyUSA

Personalised recommendations