New Forests

, Volume 6, Issue 1–4, pp 23–47 | Cite as

Genetic variation within European tree species

  • G. Müller-Starck
  • Ph. Baradat
  • F. Bergmann
Review paper Assessment of genetic diversity within and among species

Abstract

This paper reviews results of studies on genetic variation in various European coniferous and angiosperm tree species, with emphasis on Picea abies and Pinus sylvestris, Abies alba, Fagus sylvatica, and Castanea sativa. Most of the studies employ enzyme gene markers, but terpenes and other markers are also used. The comparison of data is complicated due to the variety of measures of genetic variation that are reported. Nevertheless, substantial differences in intra- and interpopulational genetic variation can be observed among and also within species. Causes for such heterogeneity are briefly discussed. The necessity for monitoring genetic variation and for standardizing measurement of genetic variation is emphasized.

Key words

genetic markers isoenzymes terpenes polyphenols heterozygosity geographic differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbez, M., Bernard-Dagan, C. and Fillon, C. 1974. Variabilité intraspécifique des monoterpenes de Pinus nigra. Bilan des premiers resultats. Ann. Sci. For. 31(1): 57–70.Google Scholar
  2. Baradat, Ph., Bernard-Dagan, C., Fillon, C. and Marpeau, A. 1972. Les terpenes du Pin maritime: aspects biologiques et génétiques. 2. Hérédité de la teneur en monoterpènes. Ann. Sci. For. 29(3):507–334.Google Scholar
  3. Baradat, Ph., Bernard-Dagan, C. and Pauly, G. 1974. Les terpènes du Pin maritime: aspects biologiques et génétiques. 3. Hérédité de la teneur en myrcène. Ann. Sci. For. 32(1): 29–54.Google Scholar
  4. Baradat, Ph., Bernard-Dagan, C. and Marpeau, A. 1979. Variation of terpenes within and between populations of Maritime pine, pp. 151–168. In: Rudin, D. (Ed) Proceedings of the IUFRO Conference on Biochemical Genetics of Forest Trees, Umeä, Sweden, 1978.Google Scholar
  5. Baradat, Ph. and Yazdani, R. 1988. Stability of genotypic expression for monoterpene synthesis in clones of Scots pine growing in different sites. Scand. J. Forest Res. 3: 25–36.Google Scholar
  6. Baradat, Ph. and Marpeau, A. 1991 a. Reconstitution of differentiation of Maritime pine on the basis of terpenic data. (submitted to Ann. Sci. For.)Google Scholar
  7. Baradat, Ph. and Marpeau, A. 1991 b. Genetic structure of natural stands of Maritime pine on the basis of terpenic data. (submitted to Ann. Sci. For.).Google Scholar
  8. Baradat, Ph., Lambardi, M. and Michelozzi, M. 1989. Terpene composition for four Italian provenances of Aleppo pine. J. Genet. Breeding 43: 195–200.Google Scholar
  9. Baradat, Ph., Barhman, N. and Petit, R. 1991. Comparison of relationships between geographical races of Maritime pine based on three kinds of gene markers: terpenes, isozymes and total proteins. (submitted to Theor. Appl. Genetics).Google Scholar
  10. Barrière, G., Comps, B., Cuguen, J., N'Tsiba, F. and Thiebaut, B. 1984. The genetical ecological variability of beech (Fagus sylvatica L.) in Europe — an alloenzymatic study: genetic isolations of beechwoods, pp. 24–50. In: Proceedings of the First Symposium on Improvement and Silviculture of Beech, Grosshansdorf 1984, IUFRO Project Group P1 10-00.Google Scholar
  11. Bergmann, F. 1974. Genetischer Abstand zwischen Populationen. 11. Die Bestimmung des genetischen Abstands zwischen europäischen Fichtenpopulationen (Picea abies) auf der Basis von Isoenzym-Genhäufigkeiten. Silvae Genetica 23: 28–32.Google Scholar
  12. Bergmann, F. 1975. Herkunfts-Identifizierung von Forstsaatgut auf der Basis von Isoenzym-Genhäufigkeiten. All. Forst- u. Jagdzeitung 146(10): 191–195.Google Scholar
  13. Bergmann, F. 1983. Ein besonderer Fall geographischer Variation an zwei Enzym-Genloci der Fichte (Picea abies), pp. 8–24. In: Verhandlungen 3. Arbeitstagung: FORUM Genetik-Wald-Forstwirtschaft. Universität Göttingen.Google Scholar
  14. Bergmann, F. and Gregorius, H.-R. 1979. Comparison of the genetic diversities of various populations of Norway spruce (Picea abies), pp. 99–107. In: Rudin, D. (Ed) Proceedings of the IUFRO Conference on Biochemical Genetics of Forest Trees. Umeä, Sweden, 1978.Google Scholar
  15. Bergmann, F. and Kownatzki, D. 1988. The genetic variation pattern of silver fir (Abies alba) in Europe monitored from enzyme gene loci, pp. 21–26. In: Paule, L. and Korpel', Š. (Eds) 5. IUFRO-Tannensymposium. VŠLD, Zvolen, ČFSR.Google Scholar
  16. Bergmann, F., Gregorius, H.-R. and Scholz, F. 1989. Isoenzymes, indicators of environmental impacts on plants or environmentally stable gene markers? pp. 17–25. In: Scholz, F., Gregorius, H.-R. and Rudin, D. (Eds) Genetic Effects of Air Pollutants in Forest Tree Populations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  17. Bergmann, F., Gregorius, H.-R. and Larsen, J. B. 1990. Levels of genetic variation in European silver fir (Abies alba) — Are they related to the species decline? Genetica 82: 1–10.Google Scholar
  18. Bernard-Dagan, C., and Baradat, Ph. 1977. Utilisation des terpènes comme outil en génétique forestière. Proceeding of EEC-Symposium on Forest Tree Biochemistry, Brux. 25–27, January 1977: 109–132.Google Scholar
  19. Bernard-Dagan, C., Fillon, C., Marpeau, A. and Pauly, G. 1982. Les terpènes du Pin maritime: aspects biologiques et génétiques. 2. Hér'edité de la teneur en monoterpènes. Ann. Sci. For. 29: 307–334.Google Scholar
  20. Bernard-Dagan, C., Pauly, G., Marpeau, A., Gleizes, M., Carde, J. P. and Baradat, Ph. 1982. Control and compartmentation of terpene biosynthesis in leaves of Pinus pinaster. Physiologie Vegetate 20(4): 775–795.Google Scholar
  21. Birks, J. S. and Kanowski, J. S. 1988. Interpretation of the composition of coniferous resin. Silvae Genetica 37(1): 29–39.Google Scholar
  22. Bonnet-Masimbert, M. and Bikay-Bikay, V. 1978. Variabilité intranspécifique des isozymes de la glutamate-oxaloacetate-transaminase chez Pinus nigra Arnold. Interêt pour la taxonomie des sous especès. Silvae Genetica 27: 71–79.Google Scholar
  23. Comps, B., Barrière, G., Merzeau, D. and Letouzey J. 1987. La variabilité alloenzymatique des hêtraies dans les sours-domaines médio- et eu-atlantiques d'Europe. Canad. Journ. For. Res. 17(7): 1043–1049.Google Scholar
  24. Comps, B., Thiebaut, B., Paule, L., Merzeau, D. and Letouzey, J. 1990. Allozyme variability in beechwoods (Fagus sylvatica L.) over central Europe: spatial differentiation among and within populations. Heredity 65: 407–417.Google Scholar
  25. Comps, B., Thiebaut, B., Sugar, I., Trinajstic, I. and Plazibat, M. 1991. Genetic variability of the croatian beech stands (Fagus sylvatica L.): Spatial differentiation with environment. Ann. des Sci. For. 48: 15–28.Google Scholar
  26. Cori, O. M. 1983. Enzymic aspects of the biosynthesis of monoterpenes in plants. Phytochemistry 22: 331–341.Google Scholar
  27. Cuguen. J., Thiebaut, B., N'Tsiba, F. and Barrière, G. 1985. Enzymatic variability of beech stands (Fagus sylvatica L.) on three scales in Europe: evolutionary mechanisms, pp. 17–39. In: Jacquart, P., Heim, G. and Antonovics, J. (Eds) Genetic Differentiation and Dispersal in Plants. NATO ASI Series, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  28. Cuguen, J., Merzeau, D. and Thiebaut, B. 1988. Genetic structure of the european beech stands (Fagus sylvatica L.): F-statistics and importance of mating system characteristics in their evolution. Heredity 60: 91–100.Google Scholar
  29. Dupouey, J. L., Fougere, V. and Kremer, A. 1990. Variabilité génétique des chênes sessile et pédonculé estimée ä l'aide de marqueur morphologique moléculaire. Revue Forestière Francaise 42: 198–204.Google Scholar
  30. Esteban, I., Bergmann, F., Gregorius H. R. and Huhtinen, O. 1976. Composition and Genetics of monoterpenes from cortical oleoresin of Norway spruce and their significance for clone identification. Silvae Genetica 25(2): 59–66.Google Scholar
  31. Fady, B. 1991. Genetic variability of the Greek fir. (submitted to Ann. Sci. For.)Google Scholar
  32. Felber, F. and Thiebaut, B. 1984. Etude préliminaire sur le polymorphisme enzymatique du hêtre, Fagus sylvatica L.: variabilité génétique de deux systèmes de peroxydases en relation avec les conditions écologiques. Acta Oecologica. Oecol. Plant. 5: 133–150.Google Scholar
  33. Fineschi, S. 1984. Determination of the origin of an isolated group of trees of Pinus nigra through enzyme gene markers. Silvae Genetica 33(4–5): 169–172.Google Scholar
  34. Fineschi, S. and Grossopi, P. 1981. Contenuto in monoterpeni di oleoresine xilematiche in provenienze diverse di Pino laricio. Italia forestale montana 36(1): 232–259.Google Scholar
  35. Fineschi, S., Malvolti, E., Morgante, M., Vendramin, G. and Paciucci, M. 1990. Erhaltung von Genressourcen bei der Kastanie (Castanea sativa Mill.), pp. 155–164. In: Hattemer, H. H. (Ed) Erhaltung forstlicher Genressourcen. Schriften aus der Forstl. Fak. d. Univ. Göttingen und der Nds. Forstl. Vers. Anst. 98, J.D. Sauerländer's Verlag, Frankfurt a.M.Google Scholar
  36. Forrest, G. I. 1979. Monoterpenic variation in lodgepole pine and Scots pine, pp. 136–150. In: Rudin, D. (Ed) Proceedings of the IUFRO Conference on Biochemical Genetics of Forest Trees. Umeå. Sweden 1978.Google Scholar
  37. Forrest, G. I. 1990. Genotypic variation among native Scots pine populations in Scotland based on monoterpene analysis. Forestry 53: 101–128.Google Scholar
  38. Gansel, C. E. and Squillace, A. E. 1976. Geographic variation in cortical oleoresin of Slash pine. Silvae Genetica 25(5–6): 150–154.Google Scholar
  39. Gerber, S., Arbez, A., Baradat, Ph. and Marpeau, A. 1991. Geographical variation and terpenic composition of Pinus nigra. (submitted to Silvae Genetica)Google Scholar
  40. Giannini, R., Vendramin, G. and Morgante, M. 1991. Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genetica 40(3–4): 160–166.Google Scholar
  41. Gillet, E. 1990. Probeme der genetischen Analyse von Restriktionsfragment-Längen-Polymorphismen (RFLP), pp. 272–277. In: Marker und Genidentifizierung — Methoden und Ergebnisse. Tagungsberichte Arbeitsgemeinschaft Pflanzenziichtung 8/9. März 1990, Hannover, Vorträge für Pflanzenzüchtung, H. 18.Google Scholar
  42. Gregorius, H.-R. 1978. The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math. Biosci. 41: 253–271.Google Scholar
  43. Gregorius, H.-R. 1987. The relationship between the concepts of genetic diversity and differentiation. Theor. Appl. Genet. 74: 397–401.Google Scholar
  44. Gregorius, H.-R. 1988. The meaning of genetic variation within and between subpopulations. Theor. Appl. Genet. 76: 947–951.Google Scholar
  45. Gregorius, H.-R. and Roberds, J. H. 1986. Measurement of genetical differentiation among subpopulations. Theor. Appl. Genet. 71: 826–834.Google Scholar
  46. Gregorius, H.-R., Krauhausen, J. and Müller-Starck, G. 1986. Spatial and temporal genetic differentiation among the seed in a stand of Fagus sylvatica L. Heredity 57: 255–262.Google Scholar
  47. Gullberg, U., Yazdani, R. and Rudin, D. 1982. Genetic differentiation between adjacent populations of Pinus sylvestris. Silva Fennica 16(2): 205–214.Google Scholar
  48. Gullberg, U., Yazdani, R., Rudin, D. and Ryman, N. 1985. Allozyme Variation in Scots pine (Pines sylvestris L.) in Sweden. Silvae Genetica 34(6): 193–201.Google Scholar
  49. Idrissi-Hassani, M. and Lebreton, P. 1992. Les Flavonoïdes du Pin maritime: une approche chimiotaxinomique. Forêt méditerranéenne 13(1): 3–8.Google Scholar
  50. Kim, Z. S. 1980. Veränderungen der genetischen Struktur von Buchenpopulationen durch Viabilitätsselektion im Keimlingsstadium, pp. 1–88. Göttingen Res. Notes in Forest Genetics 3.Google Scholar
  51. Kim, Z. S. 1985. Viability selection at an allozyme locus during development in European beech (Fagus sylvatica L.) Silvae Genetica 34(4–5): 181–186.Google Scholar
  52. Konnert, M. and Franke, F. 1990. Nachkommenschaftsprüfung und Generhaltung von Fichtenbeständen im Schwarzwald, pp. 165–177. In: Hattemer, H. H. (Ed) Erhaltung forstlicher Genressourcen. Schriften aus der Forstl. Fak. d. Univ. Göttingen und der Nds. Forstl. Vers. Anst. J. D. Sauerländer's Verlag, Frankfurt a.M.Google Scholar
  53. Kormuťák, A. 1988. Isozyme polymorphism in Slovak populations of silver fir (Abies alba Mill.), pp. 27–39. In: Paule, L. and Korpel', Š. (Eds) 5. IUFRO-Tannensymposium. VŠLD, Zvolen, ČFSR.Google Scholar
  54. Kormuťák, A., Benčať, F., Rudin, D. and Seyedyazdani, R. 1982. Isoenzyme variation in the four Slovakian populations of Abies alba Mill. Biológia (Bratislava) 37: 433–440.Google Scholar
  55. Krutovskii, K. V., Politov, D. V., Altukhov, Y. P., Milutin, L. I., Kuznetsova, G. V., Iroshnikov, Vorobyev, V. N. and Vorobyeva, N. A. 1989. Genetic variability in Siberian stone pine, Pinus sibirica in Tour. IV. Genetic diversity and amount of genetic differentiation between natural populations. Genetika 25(11): 2009–2032.Google Scholar
  56. Krutovskii, K. V., Politov, D. V. and Altukhov, Y. P. 1990. Genetic differentiation by isozyme loci between Eurasian cedar pines. Genetika 26(4): 694–707.Google Scholar
  57. Krutovskii, K. V. and Politov, D. V. 1991. Study of intra- and interspecific genetic differentiation of Eurasian cedar pines (Pinus cembra) using isozyme loci and multi-dimensional analysis. In: Molecular Mechanisms of Genetic Processes, Nauka Publishers, Moscow. (in press)Google Scholar
  58. Krzakowa, M. and Szweykowski, J. 1979. Variation of 6-PGD in the populations of Polish Scots pine (Pinus sylvestris), pp. 86–98. In: Rudin, D. (Ed) Proceedings of the Conference on Biochemical Genetics of Forest Trees. Umeå, Sweden 1978.Google Scholar
  59. Krzakowa, M. 1982. Genetic differentiation of Scots pine populations. 1. Genotypes. Silva Fennica 16(2): 200–205.Google Scholar
  60. Lagercrantz, U. and Ryman, N. 1990. Genetic structure of Norway spruce (Picea abies): Concordance of morphological and allozymic variation. Evolution 44: 38–53.Google Scholar
  61. Lebreton, P., Laracine-Pittet, C., Bayet, C. and Lauranson, J. 1990. Variabilité des polyphénolique et systématique du Pin sylvestre. Ann. Sci. For. 47: 117–130.Google Scholar
  62. Lewandowski, A. and Mejnartowicz, L. 1992. Levels and patterns of allozyme variation in some European larch (Larix decidua Mill.) populations. Hereditas (in press).Google Scholar
  63. Li, P. and Adams, W. T. 1989. Range — wide patterns of allozyme variation in Douglas-fir. Can. J. For. Res. 19: 149–161.Google Scholar
  64. Loukas, M., Vergini, Y. and Krimbas, C. B. 1983. Isozyme variations and heterozygosity in Pinus halepensis L. Biochemical Genetics 21(5–6): 497–509.Google Scholar
  65. Lumaret, R., Yacine, A., Berrod, A., Romane, F. and T. X. Li. 1991. Mating system and genetic diversity in holm oak (Quercus ilex L., Fagaceae), pp. 149–153. In: Biochemical markers in the population genetics of forest trees. Fineschi, S., Malvolti, M. E., Cannata, F. and Hattemer, H. H. (Eds) SPB Academic Publishing bv, The Hague, The Netherlands.Google Scholar
  66. Lundkvist, K. 1979. Allozyme frequency distributions in four Swedish populations of Norway spruce (Picea abies K.). Hereditas 90: 127–143.Google Scholar
  67. Lundkvist, K. and Rudin, D. 1977. Genetic variation in eleven populations of Picea abies as determined by isozyme analysis. Hereditas 85: 67–74.Google Scholar
  68. Marpeau, A. and Baradat, Ph, 1975. Les terpènes du Pin maritime: aspects biologiques et génétiques. 4. Hérédité de la teneur en deux sesquiterpènes: le longifolène le caryophyllène. Ann. Sci. For. 32(4): 185–204.Google Scholar
  69. Marpeau, A., Baradat, Ph. and Bernard-Dagan, C. 1983. Les terpènes du Pin maritime: aspects biologiques et génétiques. 5. Hérédite de la teneur en limonène. Ann. Sci. For. 40(2): 197–216.Google Scholar
  70. Mejnartowicz, L. 1979. Genetic variation in some isoenzyme loci in Scots pine (Pinus sylvestris L.) populations. Arboretum Kornickie 24: 91–104.Google Scholar
  71. Mejnartowicz, L. 1980. Polymorphism at the LAP and GOT loci in Abies alba Mill. populations. Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Biologiques. C1. V., 27(12): 1063–1070.Google Scholar
  72. Mejnartowicz, L. and Bergmann, F. 1985. Genetic differentiation among Scots pine populations from the lowlands and the mountains in Poland, pp. 253–266. In: Gregorius, H.-R. (Ed) Population Genetics in Forestry. Lecture Notes in Biomathematics, 60. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  73. Mejnartowicz. L. and Palowski, B. 1989. Studies of Scots pine populations in polluted and clean areas, pp. 115–125. In: Scholz, F., Gregorius, H.-R. and Rudin, D. (Eds) Genetic Effects of Air Pollutants in Forest Tree Populations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  74. Merzeau, D., Di Giusto, F., Comps, B., Thiebaut, B., Letousey, J. and Cuguen, J. 1989. Genetic control of isozyme systems and heterogeneity of pollen contribution in beech (Fagus sylvatica L.). Silvae Genetica 38(5–6): 195–201.Google Scholar
  75. Moreau, M. and Pastuszka P. 1991. Contribution a l'étude de la structure génétique d'un peuplement de sapin pectiné de Basse Vosges. (submitted to Ann. des Sci. For.)Google Scholar
  76. Morgante, M. and Vendramin, G. 1990. Analyse von Genressourcen von Pinus leucodermis Ant., einer Art mit kleinem Verbreitungsgebiet, pp. 87–98. In: Hattemer, H. H. (Ed) Erhaltung forstlicher Genressourcen. Schriften aus der Forstl. Fak. d. Univ. Göttingen und der Nds. Forstl. Vers. Anst. J.D. Sauerländer's Verlag, Frankfurt a.M.Google Scholar
  77. Müller-Starck, G. 1985. Genetic differences between “tolerant” and “sensitive” beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silvae Genetica 34(6): 241–247.Google Scholar
  78. Müller-Starck, G. 1987. Genetic differentiation among seed samples provenances of Pinus sylvestris L. Silvae Genetica 36(5–6): 232–238.Google Scholar
  79. Müller-Starck, G. 1989. Genetic implications of environmental stress in adult forest stands of Fagus sylvatica L., pp. 127–142. In: Scholz, F, Gregorius, H. R. and Rudin, D. (Eds) Genetic Effects of Air Pollutants in Forest Tree Populations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  80. Müller-Starck, G. and Gregorius, H.-R. 1986. Monitoring genetic variation in forest tree populations. Proc. 18th IUFRO World Congress, Ljubljana, Yugoslavia, 1986, Div. 2, Vol. 11., 589–599.Google Scholar
  81. Müller-Starck, G. and Ziehe, M. 1991. Genetic variation in populations of Fagus sylvatica, Quercus robur, and Q. petraea in Germany, pp. 125–140. In: Müller-Starck, G. and Ziehe, M. (Eds) Genetic variation in European Populations of Forest Trees. Sauerländer's Verlag, Frankfurt a.M.Google Scholar
  82. Muona, O. and Szmidt, A. E. 1985. A multilocus study of natural populations of Pinus sylvestris, pp. 226–240. In: Gregorius, H.-R. (Ed) Population Genetics in Forestry. Lecture Notes in Biomathematics, 60. Springer-Verlag, Berlin. Heidelberg, New York, Tokyo.Google Scholar
  83. Muona, O., Paule, L., Szmidt A. E. and Kärkkäiinen, V. 1990. Mating system analysis in a central and northern European population of Picea abies. Scand. J. For. Res. 5: 97–102.Google Scholar
  84. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70(12): 3321–3323.Google Scholar
  85. Nikolić, D. and Tucić, N. 1983. Isoenzyme variation within and among populations of european Black pine (Pinus nigra Arnold) Silvae Genetica 32(3–4): 80–89.Google Scholar
  86. Paule L., Yazdani, R. and Gömöry, D. 1987. Monoterpene composition of silver fir foliar oleoresin, pp. 50–66. In: Paule, L. and Korpel', Š. (Eds) 5. IUFRO-Tannensymposium. VŠLD, Zvolen, ČFSR.Google Scholar
  87. Pigliucci, M., F. Benedettelli, S. and Villani, 1990. Spatial patterns of genetic variability in Italian chestnut (Castanea sativa Mill.). Can. Journ. Botany. 68: 1962–1968.Google Scholar
  88. Prus-Glowacki, W. and Rudin, D. 1981. Short Note: Studies on antigenic proteins of Pinus sylvestris from six Swedish provenances — A pilot study. Silvae Genetica 30(6): 200–203.Google Scholar
  89. Prus-Glowacki, W. 1982. Immunochemical methods in analysis of forest tree proteins. Silva Fennica, Vol. 16(2): 219–226.Google Scholar
  90. Prus-Glowacki, W., Szweykowski, J. J. and Nowak, R. 1985. Serotaxonomical investigation of the European pine species. Silvae Genetica 34(4–5): 162–170.Google Scholar
  91. Rudin, D., Erikson, E., Ekberg, I. and Rasmuson, M. 1974. Studies of allele frequency and inbreeding in Scots pine populations by the aid of the isozyme technique. Silvae Genetica 23(1–3): 10–13.Google Scholar
  92. Rudloff E. von. 1973. Geographical variation in the terpene composition of the leaf oil of Douglas-fir. Pure Appl. Chem. 34: 401–410.Google Scholar
  93. Schiller, G., Conkle, M. T. and Grunwald, C. 1986. Local differentiation among mediterranean populations of Aleppo pine in their isoenzymes. Silvae Genetica 35(1): 11–19.Google Scholar
  94. Schiller, G. and Grunwald, C. 1987. Resin monoterpenes in range-wide provenance trials of Pinus halepensis in Israel. Silvae Genetica. 36(3–4): 109–114.Google Scholar
  95. Schiller, G. 1990. Variation in resin composition of the Italian cypress (Cupressus sempervirens) grown in Israel. Silvae Genetica 39(3–4): 89–95.Google Scholar
  96. Schröder, S. 1989. Die Wei\tanne in Süddeutschland: Genetische Variation, Kline, Korrelationen. Allg. Forst- und Jagdztg., 160: 100–104.Google Scholar
  97. Squillace A. E. 1976. Analysis of monoterpenes of conifers by gas liquid chromatography, pp. 129–157. In: Miksche, J. P. (Ed) Modern methods in Forest Genetics. Springer-Verlag, Heidelberg, Berlin, New York, Tokyo.Google Scholar
  98. Stutz, H. P. 1990. Eigenschaften und Ursachen der genetischen Differenzierung der Fichte im Wallis (Schweiz), pp. 99–114. In: Hattemer, H. H. (Ed) Erhaltung forstlicher Genressourcen. Schriften aus der Forstl. Fak. d. Univ. Göttingen and der Nds. foresl. Vers. Anst. J. D. Sauerländer's Verlag, Frankfurt a.M.Google Scholar
  99. Szmidt, A. 1982. Genetic variation in isolated populations of stone pine (Pinus cembra). Silva Fennica 16(2): 196–200.Google Scholar
  100. Szmidt, A. E., El-Kassaby, Y. A., Sigurgeirsson, A., Alden, T., Lindgren, D. and Hällgren, J. E. 1988. Classifying seedlots of Picea sitchensis and P. glauca in zones of introgression using restriction analysis of chloroplast DNA. Theor. Appl. Genetics 76: 841–845.Google Scholar
  101. Szmidt, A. E. 1990. Phylogenetic and applied studies on chloroplast genome in forest conifers. Biochemical markers in the population genetics of forest trees, pp. 185–196. In: Fineschi, S., Malvolti, M. E., Cannata, F. and Hattemer, H. H. (Eds) Biochemical markers in the population genetics of forest trees. SPB Academic Publishing bv, The Hague, The Netherlands.Google Scholar
  102. Thiebaut, B., Lumaret, R. and Vernet, Ph. 1982. The bud enzymes of beech (Fagus sylvatica L.). Genetic distinction and analysis of polymorphism in several french populations. Silvae Genetica 31(2–3): 51–60.Google Scholar
  103. Thielges, B. A. 1972. Intraspecific variation in foliage polyphenole of Pinus (subsection sylvestris). Silvae Genetica 21(3–4): 114–119.Google Scholar
  104. Tigerstedt, P. M. A. 1973. Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas 75: 47–60.Google Scholar
  105. Tigerstedt, P. M. A. 1979. Genetic adaptation of plants in the subartic environment. Holarctic Ecology 2: 264–268.Google Scholar
  106. Tigerstedt P. M. A., Hiltunen, R., Chung, M. S. and Moren, E. 1979. Inheritance and genetic variation of monoterpenes in Pinus sylvestris, pp. 29–39. In: Rudin, E. (Ed) Proceedings of the IUFRO Conference on Biochemical Genetics of Forest Trees, Umeå, Sweden 1978.Google Scholar
  107. Valizadeh, M. 1977. Esterase and acid phosphatase polimorphism in the fig tree (Ficus carica L.) Biochemical Genetics 15: 1037–1048.Google Scholar
  108. Villani, F., Benedettelli, S., Paciucci, M., Cherubini, M. and Pigliucci, M. 1991a. Genetic variation and differentiation between natural populations of chestnut (Castanea sativa Mill.) from Italy, pp. 91–103. In: Fineschi, S., Malvolti, M. E., Cannata, F. and Hattemer, H. H. (Eds) Biochemical markers in the population genetics of forest trees. SPB Academic Publishing bv, The Hague, The Netherlands.Google Scholar
  109. Villani, F., Pugliucci, M., Benedettelli, S. and Cherubini, M. 1991b. Genetic vs. geographical and climatic differentiation of Turkish chestnut. (Castanea sativa Mill) Heredity 66: 131–136.Google Scholar
  110. Wellendorf H. and Kaufmann, U. 1977. This layer chromatography of fluorescent phenolic compounds in needles: A review of current activities in Picea, pp. 203–226. In: Proceedings of EEC Symposium on Forest Tree Biochemistry, Bruxelles, Belgium.Google Scholar
  111. White, E. C. and Nilsson, J. E. 1984. Genetic variation in resin canal frequency and relationships to terpene production in foliage of Pinus contorta. Silvae Genetica 33(2–3): 79–84.Google Scholar
  112. Wright, S. 1943. Isolation of distance. Genetics 28: 114–138.Google Scholar
  113. Wright, S. 1951. The genetic structure of populations. Ann. Eugenics 15: 323–354.Google Scholar
  114. Wright, S. 1969. Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. Univ. of Chicago Press, Chicago.Google Scholar
  115. Yazdani R. and Lebreton, P. 1991. Inheritance pattern of the flavonic compounds in Scots pine. Silvae Genetica 40(2): 57–59.Google Scholar
  116. Yazdani, R., Nilsson, J. E. and Ericsson, T. 1985. Geographical variation in the relative proportion and monoterpenes in cortical oleorosis of Pinus sylvestris in Sweden. Silvae Genetica 34(6): 201–208.Google Scholar
  117. Yazdani, R. and Nilsson, J. E. 1986. Cortical monoterpene variation in natural populations of Pinus sylvestris in Sweden, Scand. J. For. Res. 1: 85–93.Google Scholar
  118. Yazdani, R., Rudin, R., Aldén, T., Lindgren, L., Harbom, B. and Ljung, K. 1982. Inheritance pattern of five monoterpenes in Scots pine. Hereditas 97: 261–272.Google Scholar
  119. Zanetto, A. and Kremer A. 1991. Allozyme polymorphism of sessile oak populations in western Europe. (submitted to Ann. Sci. For.)Google Scholar
  120. Zavarin E. 1970. Qualitative and quantitative co-occurence of terpenoids as a tool of elucidation to their biosynthesis. Phytochemistry 9: 1049–1963.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • G. Müller-Starck
    • 1
    • 2
  • Ph. Baradat
    • 3
  • F. Bergmann
    • 1
  1. 1.Abteilung Forstgenetik und ForstpflanzenzüchtungUniversität GöttingenGöttingenGermany
  2. 2.Eidgenössische Forschungsanstalt für WaldSchnee und LandschaftBirmensdorfSwitzerland
  3. 3.Institut National de la Recherche AgronomiqueCentre de Recherches de BordeauxCestasFrance

Personalised recommendations