Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility

  • G. Altankov
  • Th. Groth
Papers

It is a general trend that mammalian cells interact better with wettable surfaces than with non-wettable surfaces. The basis for this difference is still poorly understood. In this study hydrophilic clean glass and hydrophobic octadecyl glass have been used as model surfaces. We show that fibroblasts on hydrophilic surfaces may reorganize fluorescent fibronectin (FN) in an extracellular matrix-like structure whereas on hydrophobic surfaces no rearrangement of FN occurs. This was accompanied by a high proliferation of fibroblasts on clean glass whereas on octadecyl glass no cell growth occurred. Moreover, it was demonstrated that there are striking differences in the morphology of fibroblasts adhering to hydrophilic and hydrophobic surfaces, judged by the overall cell shape, the organization of FN receptors and actin filaments. Indeed, the preadsorption of FN on these surfaces could almost abolish morphological differences between hydrophilic and hydrophobic surfaces. However, preadsorption of FN could not restore the proliferation of fibroblasts on the hydrophobic surface. Taken together, the results suggest that the method of adsorption and reorganization of FN may be critical for the biocompatibility of materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. GRINNELL, M. MILAM and P. SPREE, Arh. Biochem. Biophys. 153 (1972) 193.Google Scholar
  2. 2.
    F. GRINNELL, M. MILAM and P. SPREE, Biochem. Med. 7 (1973) 87.Google Scholar
  3. 3.
    F. GRINNELL, Ann. NY Acad. Sci. 516 (1987) 280.Google Scholar
  4. 4.
    R. KLEBE, Nature 250 (1974) 248.Google Scholar
  5. 5.
    F. GRINNELL and D. HAYS, Exp. Cell Res. 115 (1978) 221.Google Scholar
  6. 6.
    F. GRINNELL and M. FELD, J. Biol. Chem. 257 (1982) 4888.Google Scholar
  7. 7.
    D. D. MCABEE and F. GRINNELL, J. Cell. Physiol. 124 (1985) 240.Google Scholar
  8. 8.
    U. JONSON, B. IVARSON, L. INGEMAR and L. BERGHEM, J. Colloid Interface Sci. 90 (1982) 148.Google Scholar
  9. 9.
    J. D. AVNUR and G. GEIGER, Cell 25 (1981) 121.Google Scholar
  10. 10.
    F. GRINNELL, J. Cell. Biol. 103 (1986) 2697.Google Scholar
  11. 11.
    J. A. MCDONALD, Annual Rev. Cell. Biol. 4 (1988) 183.Google Scholar
  12. 12.
    E. ENGVALL and E. RUOSLAHTY, nt. J. Cancer 20 (1977) 1.Google Scholar
  13. 13.
    J. RODRIGUEZ and F. DEINHARDT, Virology 12 (1960) 316.Google Scholar
  14. 14.
    J. M. SCHAKENRAAD, H. J. BUSSCHER, C. R. H. WILDEVNUR and J. ARENDS, J. Biomed. Mater. Res. 20 (1986) 773.Google Scholar
  15. 15.
    P. MCKEOWN and D. F. MOSHER, in “Fibronectin”, edited by D. F. MOSHER (Academic, New York, 1989) p. 224.Google Scholar
  16. 16.
    F. GRINNELL, personal communication (1993).Google Scholar
  17. 17.
    I. K. KANG, Y. ITO, M. SISIDO and Y. IMAQNISHI, J. Biomed. Mater. Res. 23 (1989) 223.Google Scholar
  18. 18.
    R. RAJARAMAN, D. E. ROUNDS, S. P. S. YEN and R. REMBAUM, Exp. Cell. Res. 88 (1974) 327.Google Scholar
  19. 19.
    T. A. HORBETT, M. B. SCHWAY and B. D. RATNER, J. Colloid Interface Sci. 104 (1985) 28.Google Scholar
  20. 20.
    D. STOPAK and A. K. HARRIS, EMBO J. 5 (1986) 665.Google Scholar
  21. 21.
    D. NEWGREEN and J.-P. THIERY, Cell Tissue Res. 211 (1980) 269.Google Scholar
  22. 22.
    E. BELL, B. IVARSOON and C. MERRILL, Proc. Natl. Acad. Sci. USA 76 (1979) 1277.Google Scholar
  23. 23.
    F. GRINNELL and F. R. LEMKE, J. Cell Sci. 66 (1984) 51.Google Scholar
  24. 24.
    B. GEIGER, T. VOLK and A. RAZ, Exp. Biol. Med. 10 (1985) 39.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • G. Altankov
    • 1
  • Th. Groth
    • 2
  1. 1.Central Laboratory of BiophysicsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Biomaterials Research Unit, School of Medicine (Charité)Humboldt UniversityBerlinGermany

Personalised recommendations