Advertisement

Genetica

, Volume 64, Issue 2, pp 77–81 | Cite as

Biochemical genetics of mosquitofish III. Incidence and significance of multiple insemination

  • R. K. Chesser
  • M. W. Smith
  • M. H. Smith
Article

Abstract

Evidence for multiple insemination in the mosquitofish, Gambusia affinis, was detected by statistical analysis of the enzyme phenotypes in mother-offspring combinations for three loci. The probability of nondetection of multiple insemination events for diallelic loci with two or more males mating with a female was presented. The frequency of multiple insemination for G. affinis is at least 56% but is probably nearer to 100%. The high incidence of multiple insemination together with sperm storage and delayed fertilization could have important effects on allele frequencies through time and space. These effects are due to the increase in effective population size and overlap among generations.

Keywords

Population Size Allele Frequency Effective Population Effective Population Size Sperm Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birdsall D. A. & Nash A., 1973. Occurrence of successful multiple insemination of females in natural populations of deer mice (Peromyscus maniculatus). Evolution 27: 106–110.Google Scholar
  2. Borowsky R. & Kallman K. D., 1976. Patterns of mating in natural populations of Xiphophorus. I. X. maculatus from Belize and Mexico. Evolution 30: 693–706.Google Scholar
  3. Borowsky R. & Khouri J., 1976. Patterns of mating in natural populations of Xiphophorus. II. X. variatus from Tamaulipas, Mexico. Copeia 1976: 727–734.Google Scholar
  4. Breder C. M. & Rosen D. E., 1966. Modes of reproduction in fishes. Nat. Hist. Press, New York.Google Scholar
  5. Bussing W. A., 1963. A new poecillid fish, Phallichthys tico, from Costa Rica. Contr. Sci. 77: 1–13.Google Scholar
  6. Crow J. F. & KimuraM., 1970. An introduction to population genetics theory. Harper and Row, New York.Google Scholar
  7. Ferens M. C. & MurphyJr.T. M., 1974. Effects of thermal effluents on populations of mosquito fish. pp. 237–245. In: Thermal ecology. (J. W.Gibbons and R. R.Sharitz eds). U.S. Atomic Energy Comm., Oak Ridge, TN.Google Scholar
  8. Fraser E. A. & RentonR. M., 1940. Observations on the breeding and development of the viviparous fish Heterandria formosa. Q. J. microsc. Sci. 81: 479–516.Google Scholar
  9. Gordon M., 1947. Speciation in fishes. Distribution in time and space of seven dominant alleles in Platypoecilus maculatus. Adv. Genet. 1: 95–132.Google Scholar
  10. Haskins C. P., Haskins E. F., McLaughlin J. J. A. & Hewitt R. E., 1962. Polymorphism and population structure in Lebistes reticulatus, an ecological study. pp. 320–395. In: Vertebrate Speciation (W. F.Blair ed.). Univ. Texas Press, Austin, TX.Google Scholar
  11. Hjorth J. P., 1971. Genetics of Zoarces populations. I. Three loci determining the phosphoglucose isomerase isoenzymes in brain tissue. Hereditas 69: 233–242.Google Scholar
  12. Hubbs C. & Peden A. E., 1969. Gambusia georgii sp nov. from San Marcos, Texas. Copeia 1969: 357–364.Google Scholar
  13. Jacquard A., 1974. The genetic structure of populations. Springer, New York.Google Scholar
  14. Leslie J. F. & Vrijenhock R. C., 1977. Genetic analysis of natural populations of Poeciliopsis monacha. Allozyme inheritance and pattern of mating. J. Hered. 68: 301–306.Google Scholar
  15. Martin R. G., 1975. Sexual and aggressive behavior, density and social structure in a natural population of mosquitofish, Gambusia affinis holbrooki. Copeia 1975: 445–454.Google Scholar
  16. Miller R. R., 1975. Five new species of Mexican pocciliid fishes of the genera Poecilia, Gambusia and Peociliopsis. Occ. Pap. Mus. Zool. Univ. Mich. 672: 1–44.Google Scholar
  17. Nichols E. A., Chapman V. M. & Ruddle F. H., 1973. Polymorphism and linkage for mannosephosphate isomerase in Mus musculus. Biochem. Genet. 8: 47.Google Scholar
  18. Plaice A. R. & Powers D. A., 1978. Genetic bases for protein polymorphism in Fundulus heteroclitus (L.). I. Lactate dehydrogenase (Ldh-3), malate dehydrogenase (Mdh-A), glucosephosphate isomerase (Gpi-B), and phosphoglucomutase (Pgm-A). Biochem. Genet. 16: 577–591.Google Scholar
  19. Purser G. L., 1938. Reproduction in Lebistes reticulatus. Q. J. microsc. Sci. 81: 150–158.Google Scholar
  20. Selander R. K., Smith M. H., Yang S. T., Johnson W. E. & Gentry J. B., 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Stud. Genet. VI, Univ. Texas Pubis 7103: 49–90.Google Scholar
  21. Scrimshaw N. S., 1944. Superfetation in poeciliid fishes. Copeia 1944: 180–183.Google Scholar
  22. Smith M. W., Smith M. H. & Chesser R. K., 1983. Biochemical variation in mosquitofish. I. Environmental correlates and temporal and spatial heterogeneity of allele frequencies within a river drainage. Copeia 1983: 182–193.Google Scholar
  23. Thibault R. E. & Schuitz R. J., 1978. Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae). Evolution 32: 320–333.Google Scholar
  24. VanOordt G. J., 1928. The duration of life of the spermatozoa in fertilized females of Xiphophorus helleri Regan. Tijdschr. Ned. dierk. Vereen. 1: 77–80.Google Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • R. K. Chesser
    • 1
  • M. W. Smith
    • 1
  • M. H. Smith
    • 1
  1. 1.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenU.S.A.

Personalised recommendations