Boundary-Layer Meteorology

, Volume 58, Issue 4, pp 391–408 | Cite as

Measuring surface-layer fluxes of heat and momentum using optical scintillation

  • Reginald J. Hill
  • Gerard R. Ochs
  • James J. Wilson


An experiment is described showing that an optical scintillation instrument gives reliable values of heat and momentum fluxes in the surface layer, subject to the usual restrictions of homogeneity and steady state. This instrument measures the turbulence inner scale and refractive-index structure parameter, which are used to obtain the fluxes from Monin-Obukhov similarity relationships. The instrument gives space-averaged values over a propagation path that can range in length from tens to hundreds of meters. The history of the use of optical propagation to estimate fluxes is reviewed.


Steady State Surface Layer Similarity Relationship Propagation Path Momentum Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, E. L.: 1988, ‘Atmospheric Stability from Scintillation Measurements’, Appl. Opt. 27, 2241–2246.Google Scholar
  2. Andreas, E. L.: 1989, ‘Two-Wavelength Method of Measuring Path-Averaged Turbulent Surface Heat Fluxes’, J. Atmos. Ocean. Tech. 6, 280–292.Google Scholar
  3. Andreas, E. L.: 1990a, ‘Three-Wavelength Method of Measuring Path-Averaged Turbulent Heat Fluxes’, J. Atmos. Ocean. Tech. 7, 801–814.Google Scholar
  4. Andreas, E. L. (ed.): 1990b, Selected Papers on Turbulence in a Refractive Medium, SPIE Milestone Series, Vol. 25, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA.Google Scholar
  5. Andreas, E. L.: 1991, ‘Using Scintillation at Two Wavelengths to Measure Path-Averaged Heat Fluxes in Free Convection’, Boundary-Layer Meteorol. 54, 167–182.Google Scholar
  6. Azoulay, E., Thiermann, V., Jetter, A., Kohnle, A., and Azar, Z.: 1988, ‘Optical Measurement of the Inner Scale of Turbulence’, J. Phys. D21, 541–544.Google Scholar
  7. Champagne, F. H., Friehe, C. A., LaRue, J. C., and Wyngaard, J. C.: 1977, ‘Flux Measurements, Flux Estimation Techniques, and Fine-Scale Turbulence Measurements in the Unstable Surface Layer Over Land’, J. Atmos. Sci. 34, 515–530.Google Scholar
  8. Coulter, K. L. and Wesely, M. L.: 1980, ‘Estimates of Surface Heat Flux from Sodar and Laser Scintillation Measurements in the Unstable Boundary Layer’, J. Appl. Meteorol. 19, 1209–1222.Google Scholar
  9. Hill, R. J.: 1978a, ‘Models of the Scalar Spectrum for Turbulent Advection’, J. Fluid Mech. 88, 541–562.Google Scholar
  10. Hill, R. J.: 1978b, ‘Spectra of Fluctuations in Refractivity, Temperature, Humidity, and the Temperature-Humidity Cospectrum in the Inertial and Dissipation Ranges’, Radio Sci. 13, 953–961.Google Scholar
  11. Hill, R. J.: 1982, ‘Theory of Measuring Path-Averaged Inner Scale of Turbulence by Spatial Filtering of Optical Scintillation’, Appl. Opt. 21, 1201–1211.Google Scholar
  12. Hill, R. J.: 1988, ‘Comparison of Scintillation Methods for Measuring the Inner Scale of Turbulence’, Appl. Opt. 27, 2187–2193.Google Scholar
  13. Hill, R. J.: 1989, ‘Implications of Monin-Obukhov Similarity Theory for Scalar Quantities’, J. Atmos. Sci. 46, 2235–2244.Google Scholar
  14. Hill, R. J., Bohlander, R. A., Clifford, S. F., McMillan, R. W., Priestley, J. T., and Schoenfeld, W. P.: 1988, ‘Turbulence-Induced Millimeter-Wave Scintillation Compared with Micrometeorological Measurements’, IEEE Trans. Geosci. Remote Sens. 26, 330–342.Google Scholar
  15. Hill, R. J. and Clifford, S. F.: 1978, ‘Modified Spectrum of Atmospheric Temperature Fluctuations and its Application to Optical Propagation’, J. Opt. Soc. Am. 68, 892–899.Google Scholar
  16. Hill, R. J. and Lataitis, R. J.: 1989, ‘Effect of Refractive Dispersion on the Bichromatic Correlation of Irradiances for Atmospheric Scintillation’, Appl. Opt. 28, 4121–4125.Google Scholar
  17. Hill, R. J. and Ochs, G. R.: 1978, ‘Fine Calibration of Large-Aperture Optical Scintillometers and an Optical Estimate of Inner Scale Turbulence’, Appl. Opt. 17, 3608–3612.Google Scholar
  18. Hill, R. J. and Ochs, G. R.: 1983, Surface-Layer Micrometeorology by Optical Scintillation Techniques, in Dig. Topical Meeting Optical Techniques Remote Probing Atmosphere, Lake Tahoe, NV, 10–12 Jan. 1983, Optical Society of America, Washington, DC, TuC16–1-TuC16–4.Google Scholar
  19. Hill, R. J., Ochs, G. R., Wilson, J. J., Furtney, D. A., and Priestley, J. J.: 1991, Results of the 1988 Fluxes-from-Scintillation Experiment, NOAA Technical Memorandum ERL WPL-192, NOAA Environmental Research Laboratories, Boulder, CO. 147 pp. Available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.Google Scholar
  20. Kaimal, J. C. and Wyngaard, J. C.: 1990, ‘The Kansas and Minnesota Experiments’, Boundary-Layer Meteorol. 50, 31–47.Google Scholar
  21. Kohsiek, W.: 1982a, Optical and in situ Measuring of Structure Parameters Relevant to Temperature and Humidity, and Their Application to the Measuring of Sensible and Latent Heat Flux, NOAA Technical Memorandum ERL WPL-96, NOAA Environmental Research Laboratories, Boulder, CO. 64 pp. Available from the National Technical Information Service, 5285 Port Royal Rd., Springfield. VA 22161.Google Scholar
  22. Kohsiek, W.: 1982b, ‘Measuring C T 2, C Q 2, and C TQ in the Unstable Surface Layer and Their Relations to the Vertical Fluxes of Heat and Moisture’, Boundary-Layer Meteorol. 24, 89–107.Google Scholar
  23. Kohsiek, W. and Herben, M. H. A. J.: 1983, ‘Evaporation Derived from Optical and Radio-Wave Scintillation’, Appl. Opt. 22, 2566–2570.Google Scholar
  24. Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’, Trudy, Akad. Nauk. SSSR, Geofiz. Inst. 24, 163–187.Google Scholar
  25. Moore, D. I., Dahm, C. N., Gosz, R. J., and Hill, R. J.: 1991, ‘Use of Long-Path FTIR Spectrometry in Conjunction with Scintillometry to Measure Gas Fluxes’, 2nd International Symposium on Field Screening Methods for Hazardous Wastes and Toxic Chemicals, Las Vegas, NV, 12–14 Feb. 1991.Google Scholar
  26. Obukhov, A. M.: 1949, ‘Structure of the Temperature Field in Turbulent Flow’, Izv. Akad. Nauk, SSSR, Ser. Geogr. i Geofiz. 13, 58–69.Google Scholar
  27. Ochs, G. R. and Hill, R. J.: 1985. ‘Optical-Scintillation Method of Measuring Turbulence Inner Scale’, Appl. Opt. 24, 2430–2434.Google Scholar
  28. Ochs, G. R., Holler, J. K., and Wilson, J. J.: 1990. An Optical Inner Scale Meter, NOAA Technical Memorandum ERL WPL-183, NOAA Environmental Research Laboratories, Boulder, CO, 18 pp. Available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.Google Scholar
  29. Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, New York.Google Scholar
  30. Priestley, J. T.: 1989, Data Acquisition and Analysis for the 1988 Micrometeorological Scintillation Experiment. NOAA Technical Memorandum ERL WPL-170, NOAA Environmental Research Laboratories. Boulder, CO. 74 pp. Available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.Google Scholar
  31. Taylor, R. J.: 1961, ‘A New Approach to the Measurement of Turbulent Fluxes in the Lower Atmosphere’, J. Fluid Mech. 10, 449–458.Google Scholar
  32. Thiermann, V.: 1990, Optische Messung Turbulenter Flüsse und Vorhersage der Optischen Turbulenz aus Einfachen Grenzschichtparametern, Ph.D. dissertation, University of Hamburg, Hamburg, Germany.Google Scholar
  33. Thiermann, V. and Azoulay, E.: 1988, ‘A Two Wavelength Laser Scintillometer for Monitoring Surface Layer Fluxes Under Near Neutral Conditions’, Proceedings, International Laser Radar Conference, Innichen-San Candido, Italy, 20–24 June 1988, pp. 70–73.Google Scholar
  34. Thiermann, V. and Grassl, H.: 1992, ‘The Measurement of Turbulent Surface Layer Fluxes by Use of Bichromatic Scintillation’, Boundary-Layer Meteorol. 58, 367–389 (this issue).Google Scholar
  35. Wesely, M. L.: 1976a, ‘The Combined Effect of Temperature and Humidity Fluctuations on Refractive Index’, J. Appl. Meteorol. 15, 43–49.Google Scholar
  36. Wesely, M. L.: 1976b, ‘A Comparison of Two Optical Methods for Measuring Line Averages of Thermal Exchanges above Warm Water Surfaces’, J. Appl. Meteorol. 15, 1177–1188.Google Scholar
  37. Wesely, M. L. and Derzko, Z. I.: 1975, ‘Atmospheric Turbulence Parameters from Visual Resolution’, Appl. Opt. 14. 847–853.Google Scholar
  38. Wyngaard, J. C.: 1973, ‘On Surface-layer Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society. Boston, MA., pp. 101–149.Google Scholar
  39. Wyngaard, J. C. and Clifford, S. F.: 1978, ‘Estimating Momentum, Heat, and Moisture Fluxes from Structure Parameters’, J. Atmos. Sci. 35, 1204–1211.Google Scholar
  40. Wyngaard, J. C. and Coté, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.Google Scholar
  41. Wyngaard, J. C., Izumi, Y., and Collins, S. A. Jr.: 1971, ‘Behavior of the Refractive-index-structure Parameter Near the Ground’, J. Opt. Soc. Amer. 61, 1646–1650.Google Scholar
  42. Wyngaard, J. C., Kaimal, J. C., Ochs, G. R., Hill, R. J., and Sorensen, D. C.: 1978. An Optical Heat Flux Experiment, Proceedings, 4th Symposium on Meteorological Observations and Instrumentation. Denver, CO 10–14 April 1978, American Meteorological Society, Boston, MA., pp. 47–50.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Reginald J. Hill
    • 1
  • Gerard R. Ochs
    • 1
  • James J. Wilson
    • 1
  1. 1.Wave Propagation Laboratory, Environmental Research Laboratories, Natonal Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations