Advertisement

Journal of Low Temperature Physics

, Volume 42, Issue 3–4, pp 339–361 | Cite as

Thickness measurements of unsaturated superfluid 4He films under driven and persistent flow

  • D. T. Ekholm
  • R. B. Hallock
Article

Third-sound techniques have been used to measure the thickness of an unsaturated superfluid 4He film as a function of flow velocity. Under the conditions of persistent flow the film thins according to the predictions of Kontorovich. In situations in which a heater is used to continuously drive a film current the measured thinning is in disagreement with the predictions of Kontorovich. A possible explanation for these results is presented. We conclude that the film thinning problem presents no fundamental discrepancy with the Bernoulli equation.

Keywords

Flow Velocity Magnetic Material Thickness Measurement Bernoulli Equation Fundamental Discrepancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Kontorovich, Zh. Eksp. Teor. Fiz. 30, 805 (1956) [Sov. Phys.—JETP 3, 770 (1956)].Google Scholar
  2. 2.
    J. Tilley, Proc. Phys. Soc. Lond. 84, 77 (1964).Google Scholar
  3. 3.
    S. Franchetti, Nuovo Cim. 10, 622 (1958).Google Scholar
  4. 4.
    P. W. F. Gribbon and L. C. Jackson, Can. J. Phys. 41, 1047 (1963).Google Scholar
  5. 5.
    K. A. Pickar and K. R. Atkins, Phys. Rev. 178, 389 (1969).Google Scholar
  6. 6.
    W. E. Keller, Phys. Rev. Lett. 24, 569 (1970).Google Scholar
  7. 7.
    D. T. Ekholm and R. B. Hallock, Phys. Rev. B 19, 2485 (1979).Google Scholar
  8. 8.
    E. R. Huggins, Phys. Rev. Lett. 24, 573 (1970).Google Scholar
  9. 9.
    E. R. Huggins, Phys. Rev. Lett. 24, 699 (1970).Google Scholar
  10. 10.
    D. L. Goodstein and P. G. Saffman, Phys. Rev. Lett. 24, 1402 (1970).Google Scholar
  11. 11.
    D. L. Goodstein and P. G. Saffman, Proc. Roy. Soc. Lond. A 325, 447 (1971).Google Scholar
  12. 12.
    D. J. Bergman, Proc. Roy. Soc. Lond. A 333, 261 (1973).Google Scholar
  13. 13.
    K. L. Telschow, I. Rudnick, and T. G. Wang, J. Low Temp. Phys. 18, 43 (1975).Google Scholar
  14. 14.
    E. van Spronsen, H. J. Verbeek, R. de Bruyn Ouboter, K. W. Taconis, and H. van Beelan, Phys. Lett. A 45, 49 (1973).Google Scholar
  15. 15.
    G. A. Williams and R. E. Packard, Phys. Rev. Lett. 32, 587 (1974).Google Scholar
  16. 16.
    R. E. Packard, private communication.Google Scholar
  17. 17.
    D. L. Goodstein and P. G. Saffman, J. Low Temp. Phys. 18, 435 (1975).Google Scholar
  18. 18.
    R. B. Hallock, unpublished.Google Scholar
  19. 19.
    E. B. Flint and R. B. Hallock, Phys. Rev. B 11, 2062 (1975).Google Scholar
  20. 20.
    R. B. Hallock, Quantum Statistics and the Many Body Problem, S. B. Trickey et al., eds. (Plenum, New York, 1975), p. 185.Google Scholar
  21. 21.
    K. R. Atkins, Proc. Roy. Soc. A 203, 119 (1950).Google Scholar
  22. 22.
    J. F. Robinson, Phys. Rev. 82, 440 (1951).Google Scholar
  23. 23.
    R. B. Hallock and E. B. Flint, Phys. Rev. A 10, 1285 (1974).Google Scholar
  24. 24.
    R. B. Hallock, Phys. Lett. A 51, 457 (1975).Google Scholar
  25. 25.
    G. M. Graham and E. Vittoratos, Phys. Rev. Lett. 33, 1136 (1974).Google Scholar
  26. 26.
    D. S. W. Kwoh and D. L. Goodstein, J. Low Temp. Phys. 27, 187 (1977).Google Scholar
  27. 27.
    F. J. Kehayias and R. B. Hallock, Phys. Lett. A 74, 337 (1979).Google Scholar
  28. 28.
    T. G. Wang and D. Petrac, Phys. Rev. B 11, 4221 (1975).Google Scholar
  29. 29.
    D. G. Blair and C. C. Matheson, J. Low Temp. Phys. 20, 585 (1975).Google Scholar
  30. 30.
    H. J. Verbeek, E. van Spronsen, M. Mars, H. van Beelan, R. de Bruyn Ouboter, and K. W. Taconis, Physica (Utr.) 73, 621 (1974).Google Scholar
  31. 31.
    R. K. Galkiewicz and R. B. Hallock, Phys. Rev. Lett. 33, 1973 (1974).Google Scholar
  32. 32.
    R. K. Galkiewicz, K. L. Telschow, and R. B. Hallock, J. Low Temp. Phys. 26, 147 (1977).Google Scholar
  33. 33.
    G. M. Graham, J. Low Temp. Phys. 27, 177 (1977).Google Scholar
  34. 34.
    D. T. Ekholm and R. B. Hallock, Phys. Rev. Lett. 42, 449 (1979); Phys. Rev. B 21, 3902, 3913 (1980).Google Scholar
  35. 35.
    R. B. Hallock, Rev. Sci. Instr. 43, 1713 (1972).Google Scholar
  36. 36.
    S. Brunauer, P. Commett, and E. Teller, J. Am. Chem. Soc. 19, 309 (1938).Google Scholar
  37. 37.
    K. L. Telschow and R. B. Hallock, Phys. Rev. Lett. 37, 1484 (1976).Google Scholar
  38. 38.
    S. J. Putterman, Superfluid Hydrodynamics (North-Holland, Amsterdam, 1974), Ch. 5.Google Scholar
  39. 39.
    K. L. Telschow, I. Rudnick, and T. G. Wang, Phys. Rev. Lett. 32, 1292 (1974).Google Scholar
  40. 40.
    F. Rief, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965), p. 195.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • D. T. Ekholm
    • 1
  • R. B. Hallock
    • 1
  1. 1.Laboratory for Low Temperature Physics, Department of Physics and AstronomyUniversity of MassachusettsAmherst

Personalised recommendations