Boundary-Layer Meteorology

, Volume 79, Issue 1–2, pp 131–175 | Cite as

An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations

  • Keith W. Ayotte
  • Peter P. Sullivan
  • Anders Andrén
  • Scott C. Doney
  • Albert A. M. Holtslag
  • William G. Large
  • James C. McWilliams
  • Chin-Hoh Moeng
  • Martin J. Otte
  • Joseph J. Tribbia
  • John C. Wyngaard
Article

Abstract

This paper compares a number of one-dimensional closure models for the planetary boundary layer (PBL) that are currently in use in large-scale atmospheric models. Using the results of a large-eddy simulation (LES) model as the standard of comparison, the PBL models are evaluated over a range of stratifications from free convective to neutral and a range of surface shear stresses. Capping inversion strengths for the convective cases range from weakly to strongly capped. Six prototypical PBL models are evaluated in this study, which focuses on the accuracy of the boundary-layer fluxes of momentum, heat, and two passive scalars. One scalar mimics humidity and the other is a top-down scalar entrained into the boundary layer from above. A set of measures based on the layer-averaged differences of these fluxes from the LES solutions is developed. In addition to the methodological framework and suite of LES solutions, the main result of the evaluation is the recognition that all of the examined PBL parameterizations have difficulty reproducing the entrainment at the top of the PBL, as given by the LES, in most parameter regimes. Some of the PBL models are relatively accurate in their entrainment flux in a subset of parameter regimes. The sensitivity of the PBL models to vertical resolution is explored, and substantive differences are observed in the performance of the PBL models, relative to LES, at low resolution typical of large scale atmospheric models.

Key words

closure large-eddy simulation comparison turbulent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André, J. C., De Moore, G., Lacarrere, P., Therry, G., and Du Vachat, R.: 1978, ‘modelling the 24 h Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.Google Scholar
  2. Andrén, A., Brown, A., Graf, J., Mason, P., Moeng, C-H., Nieuwstadt, F. T. M., and Schumann, U.: 1994, ‘Large-Eddy Simulation of a Neutrally Stratified Boundary Layer: A Comparison of Four Computer Codes’, Quart. J. Roy. Meteorol. Soc. 120, 1457–1484.Google Scholar
  3. Andrén, A. and Moeng, C-H.: 1993, ‘Single-Point Closures in a Neutrally Stratified Boundary Layer’, J. Atmos. Sci 50, 3366–3379.Google Scholar
  4. Andrén, A.: 1990, ‘Evaluation of a Turbulence Closure Scheme Suitable for Air-Pollution Applications’, J. Appl. Meteorol. 29, 224–239.Google Scholar
  5. Arya, S. P.: 1988, Introduction to Micrometeorology, Academic Press, 303 pp.Google Scholar
  6. Augstein, H., Riehl, H. Ostopoff, F. and Wagner, V.: 1973, ‘Mass and Energy Transports in an Undisturbed Atlantic Trade Wind Flow’, Mon. Wea. Rev. 101, 101–111.Google Scholar
  7. Ball, F. K.: 1960, ‘Control of Inversion Height by Surface Heating’, Quart. J. Roy. Meteorol. Soc. 86, 483–494.Google Scholar
  8. Betts, A. K. and Miller, M. J.: 1986, ‘A New Convective Adjustment Scheme. Part II: Single Column Tests using GATE Wave, BOMEX, ATEX and Arctic Air-Mass Data Sets’, Quart. J. Roy. Meteorol. Soc. 112, 693–709.Google Scholar
  9. Bradshaw, P.: 1972, ‘The Understanding and Prediction of Turbulent Flow’, Aero. J. 76, 403–418.Google Scholar
  10. Briere, S.: 1981, ‘Energetics of Daytime Sea-Breeze Circulation as Determined from a Two-Dimensional, Third-Order Turbulence Closure Model’, J. Atmos. Sci. 44, 1455–1474.Google Scholar
  11. Brost, R. A., Wyngaard, J. C., and Lenschow, D. H.: 1982, ‘Marine Stratocumulus Layers. Part II: Turbulence Budgets’, J. Atmos. Sci. 39, 818–836.Google Scholar
  12. Brown, R. C. and Foster, R. A.: 1994, ‘On PBL Models for General Circulation Models’, Atmos. Ocean Syst. 2, 163–183.Google Scholar
  13. Businger, J. A.: 1973, ‘Turbulent Transfer in the Atmospheric Surface Layer’, In D. A. Haugen (ed.), Workshop on Micrometeorology, Amer. Met. Soc, Boston, 392 pp.Google Scholar
  14. Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data’, Tech. Paper 19, Div. Meteorol. Phys. CSIRO, Australia.Google Scholar
  15. Deardorff, J. W.: 1970, ‘A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers’, J. Fluid. Mech. 41, 453–480.Google Scholar
  16. Deardorff, J. W.: 1972a, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’, J. Atmos. Sci. 29, 91–115.Google Scholar
  17. Deardorff, J. W.: 1972b, ‘Parameterization of the Planetary Boundary Layer for use in General Circulation Models’, Mon. Wea. Rev. 100, 93–106.Google Scholar
  18. Deardorff, J. W.: 1972c, ‘Theoretical Expression for the Countergradient Vertical Heat Flux’, J. Geophys. Res. 77, 5900–5904.Google Scholar
  19. Deardorff, J. W.: 1980, ‘Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional model’, Bound. Layer Meteorol. 18, 495–527.Google Scholar
  20. Driedonks, A. G. M.: 1982, ‘Models and Observations of the Growth of the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 23, 283–306.Google Scholar
  21. Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relations’, Boundary-Layer Meteorol. 1, 363–372.Google Scholar
  22. Galperin, B. and Orszag, S. A. Eds.: 1993, Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge U. Press, 600 pp.Google Scholar
  23. Garratt, J. R.: 1993, ‘Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatment—A Review’, J. Climate 6, 419–449.Google Scholar
  24. Grant, L. M.: 1986, ‘Observations of Boundary Layer Structure Made During the 1981 KONTUR Experiment’, Quart. J. Roy. Meteorol. Soc. 112, 825–841.Google Scholar
  25. Helfand, H. M. and Labraga, J. C.: 1988, ‘Design of a Nonsingular Level 2.5 Second-Order Closure Model for the Prediction of Atmospheric Turbulence’, J. Atmos. Sci. 45, 113–132.Google Scholar
  26. Herring, J. R. and Kerr, R. M.: 1982, ‘Comparison of Direct Numerical Simulations with Predictions of Two-Point Closures for Isotropic Turbulence Convecting a Passive Scalar’, J. Fluid Mech. 118, 205–219.Google Scholar
  27. Holland, J. Z. and Rasmusson, E. M.: 1973, ‘Measurements of the Atmospheric Mass, Energy and Momentum Budgets over a 500 km Square of Tropical Ocean’, Mon. Wea. Rev. 101, 44–55.Google Scholar
  28. Holtslag, A. A. M., De Bruijn, E. I. R., and Pan, H-L.: 1990, ‘A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting’, Mon. Wea. Rev. 118, 1561–1575.Google Scholar
  29. Holtslag, A. A. M. and Moeng, C-H.: 1991, ‘Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary Layer’, J. Atmos. Sci. 48, 1690–1698.Google Scholar
  30. Holtslag, A. A. M. and Boville, B. A.: 1993, ‘Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model’, J. Climate 6, 1825–1842.Google Scholar
  31. Kerr, R. M.: 1985, ‘Higher-Order Derivative Correlations and the Alignment of Small-Scale Structures in Isotropic Numerical Turbulence’, J. Fluid Mech. 153, 31–58.Google Scholar
  32. Kim, J. and Mahrt, L.: 1992, ‘Simple Formulation of Turbulent Mixing in the Stable Free Atmosphere and Nocturnal Boundary Layer’, Tellus 44A, 381–394.Google Scholar
  33. Klemp, J. B. and Durran, D. R.: 1983, ‘An Upper Boundary Condition Permitting Internal Gravity Wave Radiation in Numerical Mesoscale Models’, Mon. Wea. Rev. 111, 430–444.Google Scholar
  34. Kline, S. J., Morkovin, M. V., Sovran, G., and Cockrell, D. J.: 1968, ‘Methods, Predictions Evaluation and Flow Structure, Volume 1’, Proc. Computation of Turbulent Boundary Layers- 1968 AFOSR-IFP-Stanford Conference.Google Scholar
  35. Launder, B. E., Reece, G. T., and Rodi, W.: 1975, ‘The Development of a Reynolds Stress Turbulent Closure’, J. Fluid. Mech. 68, 537–566.Google Scholar
  36. Louis, J-F: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 11, 187–202.Google Scholar
  37. Louis, J-F., Tiedtke, M., and Geleyn, J-: 1981, ‘A Short History of the PBL Parameterization at ECMWF’, Workshop on Planetary Boundary Layer Parameterization, 25–27 November, 1981, ECMWF.Google Scholar
  38. Lumley, J. L.: 1978, ‘Computational modelling of Turbulent Flows’, Adv. Appl. Mech. 18, 123–176.Google Scholar
  39. Mann, J., Davis, K. J., Lenschow, D. H., Oncley, S. P., Kiemle, C., Ehrt, G., Giez, A., and Schreiber, H. G.: 1995, ‘Airborne Observations of the Boundary Layer Top, and Associated Gravity Waves and Boundary Layer Structure’, Ninth Symposium on Meteorological Observations and Instrumentation, 27–31 March, 1995, American Meteorological Society, Boston, MA, pp. 113–116Google Scholar
  40. McWilliams, J. C., Gallacher, P. C., Moeng, C-H. and Wyngaard, J. C.: 1993, ‘modelling the Oceanic Planetary Boundary Layer, In B. Galperin and S. A. Orszag, (eds.), Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge U. Press, 600 pp.Google Scholar
  41. Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.Google Scholar
  42. Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophys. Space Phys. 20(4), 851–875.Google Scholar
  43. Moeng, C-H. and Schumann, U.: 1991, ‘Composite Structure of Plumes in Stratus-Topped Boundary Layers’, J. Atmos. Sci. 48, 2280–2291.Google Scholar
  44. Moeng, C-H. and Sullivan, P. P.: 1993, ‘A Comparison of Shear and Buoyancy Driven Planetary-Boundary Flows’, J. Atmos. Sci. 51, 999–1022.Google Scholar
  45. Moeng, C-H. and Wyngaard, J. C.: 1988, ‘Spectral Analysis of Large-Eddy Simulations of the Convective Boundary Layer’, J. Atmos. Sci. 45, 3575–3587.Google Scholar
  46. Moeng, C-H. and Wyngaard, J. C.: 1989, ‘Evaluation of Turbulent Transport and Dissipation Closures in Second-Order modelling’, J. Atmos. Sci. 46, 2311–2330.Google Scholar
  47. Moeng, C-H.: 1984, ‘A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence’, J. Atmos. Sci. 41, 2052–2062.Google Scholar
  48. Moeng,C-H. and Randall, D. A.: 1984, ‘Problems in Simulating the Stratocumulus-Topped Boundary Layer with a Third-Order Closure Model’, J. Atmos. Sci. 41, 1588–1600.Google Scholar
  49. Nieuwstadt, F. T. M., Mason, P. J., Moeng, C-H., and Schumann, U.: 1993, ‘Large-Eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer Codes’, In Durst et al. (eds.), Turbulent Shear Flows 8, Springer-Verlag, Berlin, 431 pp.Google Scholar
  50. Pollard, R. T., Rhines, P. B., and Thompson, R. O. R. Y.: 1973, ‘The Deepening of the Wind-Mixed Layer’, Geophys. Fluid Dyn. 4, 381–404.Google Scholar
  51. Price, J. F. and Weller, R. A.: 1986, ‘Diurnal Cycling: Observations and Models of the Upper Ocean Response to Diurnal Heating, Cooling and Wind Mixing’, J. Geophys. Res. 91(C7), 8411–8427.Google Scholar
  52. Price, J. F., Mooers, C. N. K., and Van Leer, J. C.: 1978, ‘Observation and Simulation of Storm-Induced Mixed Layer Deepening’, J. Phys. Oceanogr. 8, 582–599.Google Scholar
  53. Randall, D. A., Shao, Q., and Moeng, C-H.: 1992, ‘A Second-Order Bulk Boundary-Layer Model’, J. Atmos. Sci. 49, 1903–1923.Google Scholar
  54. Rogallo, R. S. and Moin, P.: 1984, ‘Numerical Simulation of Turbulent Flows’, Ann. Rev. Fluid Mech. 16, 99–137.Google Scholar
  55. Schmidt, H. and Schumann, U.: 1989, ‘Coherent Structure of the Convective Boundary Layer Derived from Large-Eddy Simulations’, J. Fluid Mech. 200, 511–562.Google Scholar
  56. Smagorinski, J.: 1963, ‘General circulation experiments with the primitive equations. I. The Basic Experiment’, Mon. Wea. Rev. 91, 99–164.Google Scholar
  57. Stull, R. B.: 1993, ‘Review of Non-Local Mixing in Turbulent Atmospheres: Transilient Turbulence Theory’, Boundary-Layer Meteorol. 62, 21–96.Google Scholar
  58. Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston, 666 pp.Google Scholar
  59. Stull, R. B.: 1984, ‘Transilient Turbulence Theory. Part 1. The Concept of Eddy Mixing Across Finite Distances’, J. Atmos. Sci. 41, 3351–3367.Google Scholar
  60. Suarez, M. J., Arakawa, A., and Randal, D. A.: 1983, ‘The Parameterization of the Planetary Boundary Layer in the UCLA General Circulation Model: Formulation and Results’, Mon. Wea. Rev. 111, 2224–2243.Google Scholar
  61. Sullivan, P. P., McWilliams, J. C., and Moeng, C-H.: 1994, ‘A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows’, Boundary-Layer Meteorol. 71, 247–276.Google Scholar
  62. Taylor, P. A. and Wyngaard, J. C.: 1990, PBL Model Evaluation Workshop: European Centre for Medium-Range Forecasts, 14–15 August 1989, Reading. World Climate Research Programme Series 42, WMO/TD 378.Google Scholar
  63. Tennekes, H. and Driedonks, A. G. M.: 1981, ‘Basic Entrainment Equations for the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 20, 515–531.Google Scholar
  64. Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above the Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.Google Scholar
  65. Thompson, R. M., Payne, S. W., Reckel, E. E., and Reed, R. J.: 1979, ‘Structure and Properties of Synoptic Scale Wave Disturbances in the Intertropical Convergence Zone of the Eastern Atlantic’, J. Atmos. Sci. 36, 53–72.Google Scholar
  66. Tjernström, M.: 1993, ‘Turbulence Length Scales in Stably Stratified Free Shear Flow Analyzed from Slant Aircraft Profiles’, J. App. Meteorol. 32, 948–963.Google Scholar
  67. Troen, I. and Mahrt, L.: 1986, ‘A Simple Model of the Atmospheric Boundary Layer: Sensitivity to Surface Evaporation’, Boundary-Layer Meteorol. 37, 129–148.Google Scholar
  68. Wyngaard, J. C. Ed.: 1984, Large-Eddy Simulation: Guidelines for its Application to Planetary Boundary Layer Research. US Army Research Office Contract No. 0804.Google Scholar
  69. Yamada, T.: 1983, ‘Simulations of Nocturnal Drainage Flows by a q2l Turbulence Closure Model’, J. Atmos. Sci. 40, 91–106.Google Scholar
  70. Yamada, T. and Mellor, G. L.: 1979, ‘A Numerical Simulation of BOMEX Data using a Turbulence Closure Model Coupled with Ensemble Cloud Relations’, Quart. J. Roy. Meteorol. Soc. 105, 915–944.Google Scholar
  71. Zeman, O. and Lumley, J. L.: 1976, ‘modelling Buoyancy Driven Mixed Layers’, J. Atmos. Sci. 33, 1974–1988.Google Scholar
  72. Zeman, O. and Tennekes, H.: 1977, ‘Parameterization of the Turbulent Kinetic Energy Budget at the Top of the Daytime Boundary Layer’, J. Atmos. Sci. 34, 111–123.Google Scholar
  73. Zilitinkevich, S. S.: 1975, ‘Comments on a Paper by H. Tennekes’, J. Atmos. Sci. 32, 991–995.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Keith W. Ayotte
    • 1
  • Peter P. Sullivan
    • 1
  • Anders Andrén
    • 1
  • Scott C. Doney
    • 1
  • Albert A. M. Holtslag
    • 1
  • William G. Large
    • 1
  • James C. McWilliams
    • 1
  • Chin-Hoh Moeng
    • 1
  • Martin J. Otte
    • 1
  • Joseph J. Tribbia
    • 1
  • John C. Wyngaard
    • 1
  1. 1.Mesoscale and Microscale Meteorology DivisionNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations