Advertisement

Boundary-Layer Meteorology

, Volume 79, Issue 1–2, pp 107–130 | Cite as

Modelling the arctic convective boundary-layer with different turbulence parameterizations

  • Christof Lüpkes
  • K. Heinke Schlünzen
Article

Abstract

Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).

Key words

convection countergradient transport convective boundary layer mesoscale modelling polar regions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigalke, K.: 1992, ‘A New Method for Incorporating Point Sources into Eulerian Dispersion Models’, In: van Dop, H. and G. Kallos (ed.): Air Pollution Modelling And its Application IX,Plenum Publishing Corporation, New York, pp. 651–660Google Scholar
  2. Blackadar, A.K.: 1962, ‘The vertical distribution of wind and turbulent exchange in a neutral atmosphere’, J. Geophys. Res. 67, 3095–3102Google Scholar
  3. Brummer, B.: 1993, ARKTIS 1993, Report on the Field Phase with Examples of Measurements, Berichte aus dem ZMK, Hamburg 11, 186 pp.Google Scholar
  4. Chrobok, G., Raasch, S., Etling, D.: 1992, ‘A Comparison of Local and Nonlocal Turbulence Closure Methods for the Case of a Cold Air Outbreak’, Boundary-Layer Meteorol. 58, 69–90Google Scholar
  5. Deardorff, J.W.: 1966, ‘The Countergradient Heat Flux in the Lower Atmosphere and in the Laboratory’, J. Atmos. Sci. 23, 503–506Google Scholar
  6. Deardorff, J.W.: 1972, ‘Theoretical Expression for the Countergradient Vertical Heat Flux’, J. Geophys. Res. 77, 5900–5904Google Scholar
  7. Deardoff, J.W.: 1973, ‘The Use of Subgrid Transport Equations in a Three-dimensional Model of Atmospheric Turbulence’, J. Fluids Engr. 95, 429–438Google Scholar
  8. Dunst, M.: 1982, ‘On the Vertical Structure of the Eddy Diffusion Coefficient in the PBL’, Atmosph. Environ 16, 2071–2074Google Scholar
  9. Dyer, A.J.: 1974, ‘A Review of Flux-Profile Relationship’, Boundary-Layer Meteorol. 7, 362–372Google Scholar
  10. Ebert, E.E., U. Schumann, and Stull, R.B.: 1989, ‘Nonlocal Turbulent Mixing in the Convective Boundary Layer Evaluated from Large-Eddy Simulation’, J. Atmos. Sci. 46, 2178–2207Google Scholar
  11. Hartmann, J.: 1990, ‘Airborne Turbulence Measurements in the Maritime Convective Boundary Layer’, Thesis, School of Earth Sciences of the Flinders University, Australia, 162 pp.Google Scholar
  12. Hartmann, J., C. Kottmeier, and S. Raasch: 1995, ‘Boundary Layer Deveploment and Roll Vortex Structure during a Cold Air Outbreak’, in preparation Google Scholar
  13. Herbert, F.and Kramm, G.: 1985, ‘Trockene Deposition reaktionsträger Substanzen, beschrieben mit einem diagnostischen Modell der bodennahen Luftschicht’, Published in: Becker, K.H. and J. Löbel (Ed.): Atmosphärische Spurenstoffe und ihr physikalisch-chemisches Verhalten., Springer Verlag, Berlin, 264 pp.Google Scholar
  14. Holtslag, A.A.M. and Moeng, C.H.: 1991, ‘Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary Layer’, J. Atmos. Sci. 48, 1690–1698Google Scholar
  15. Holtslag, A.A.M. Boville, B.A.: 1993, ‘Local versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model’, J. Climate 6, 1825–1842Google Scholar
  16. Kapitza, H. and Eppel, D.: 1987, ‘A 3-d. Poisson Solver Based on Conjugate Gradients Compared to Standart Iterative Methods and its Performance on Vector Computers’, J. Comp. Phys. 68, 474–484Google Scholar
  17. Kottmeier, C., Hartmann, J., Wamser, C., Bochert, A., Lüpkes, C., Freese, gnD., Cohrs, W.: 1994, Radiation and Eddy Flux Experiment 1993 (REFLEX II), Reports on Polar Research, AWI Bremerhaven 133, 62 pp.Google Scholar
  18. Niemeier, U. Schlünzen, K.H.: 1993, ‘Modelling Steep Terrain Influences on Flow Pattern at the Isle of Helgoland’, Beitr. Phys. Atmosph. 66, 45–62Google Scholar
  19. Orlanski, I.: 1976, ‘A Simple Boundary Condition for Unbounded Hyperbolic Flows’, J. Comp. Phys. 21, 251–269Google Scholar
  20. Priestley, C.H. and Swinbank, W.C.: 1947, ‘Vertical Transport of Heat by Turbulence in the Atmosphere’, Proc. Roy Soc. A189, 543–561Google Scholar
  21. Schlünzen, K.H.: 1988, Das mesoskalige Transport- und Strömungsmodell 'METRAS — Grundlagen, Validierung, Anwendung -, Hamburger Geophysikalische Einzelschriften A88, 139 pp.Google Scholar
  22. Schlünzen, K.H.: 1990, ‘Numerical Studies on the Inland Penetration of Sea Breeze Fronts at a Coastline with Tidally Flooded Mudflats’, Beitr. Physik Atm. 63, 254–256Google Scholar
  23. Schlünzen, K.H.: 1994, ‘Atmosphärische Einträge von Nähr- und Schadstoffen’, in: Lozán, J.L.; E. Rachor; K. Reise; H. v. Westernhagen; W. Lenz (eds.): Warnsignale aus dem Wattenmeer — Wissenschaftliche Fakten. Blackwell Wissenschafts-Verlag, Berlin, 45–48Google Scholar
  24. Schlünzen, K.H. and Krell, U.: 1994, ‘Mean and Local Transport in Air’, in: Sündermann, J. (ed.): Circulation and Contaminant Fluxes in the North Sea. Springer Verlag, 317–344Google Scholar
  25. Schlünzen, K.H. and Pahl, S.: 1992, ‘Modification of Dry Deposition in a Developing Sea-Breeze Circulation — a Numerical Case Study’, Atmosph. Environ. 26A, 51–6Google Scholar
  26. Schmidt, H. and Schumann, U.: 1989, ‘Coherent Structure of the Convective Boundary Layer Derived from Large-Eddy-Simulations’, J. Fluid Mech. 200, 511–562Google Scholar
  27. Schumann, U.: 1987, ‘The Countergradient Heat Flux in Turbulent Stratified Flows’, Nucl. Eng. and Design 100, 255–262Google Scholar
  28. Shapiro, R.: 1971, ‘The Use of Linear Filtering as a Parameterization of Diffusion’, J. Atmos. Sci. 28, 523–531Google Scholar
  29. Stull, R.B. and Driedonks, A.G.M.: 1990, ‘Applications of the Transilient Turbulence Parameterization to Atmospheric Boundary-Layer Simulations’, Boundary-Layer Meteorol. 43, 209–239Google Scholar
  30. Troen, I.B. and Mahrt, L.: 1986, ‘A Simple Model of the Atmospheric Boundary Layer; Sensitivity to Surface Evaporation’, Boundary-Layer Meteorol. 37, 129–148Google Scholar
  31. Wu, Z. and Schlünzen, K.H.: 1992, ‘Numerical Study on the Local Wind Structures Forced by the Complex Terrain of Qingdao Area’, Acta Meteorologica Sinica 6, 355–366Google Scholar
  32. Wyngaard, J.C. and Brost, R.A.: 1984, ‘Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer’, J. Atmos. Sci. 41, 102–112Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Christof Lüpkes
    • 1
  • K. Heinke Schlünzen
    • 2
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Meteorological Institute, Centre for Marine and Climate Research, University of HamburgHamburgGermany

Personalised recommendations