Advertisement

Boundary-Layer Meteorology

, Volume 59, Issue 3, pp 243–256 | Cite as

An open path, fast response infrared absorption gas analyzer for H2O and CO2

  • David L. Auble
  • Tilden P. Meyers
Article

Abstract

An open path infrared absorption based instrument for fast response measurements of H2O and CO2 fluctuations is described. This instrument performed reliably in several field experiments in both terrestrial and marine environments, on both fixed (tower) and mobile (boat, plane) flux platforms. Noise levels for H2O and CO2 concentrations were less than 10 mg/m3 and 300 Μg/m3, respectively for frequencies between 0.005 and 10 Hz. Drifts in instrument output, associated with changes in instrument temperature, are compensated for electronically.

Keywords

Noise Level Field Experiment Marine Environment Fast Response Response Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, J., Baumgart, R., and Weitkamp, C.: 1981, ‘Two-Mirror Multi-Pass Absorption Cell’, Appl. Optics 20, 995–999.Google Scholar
  2. Bingham, G. E., Gillespie, C. H., and McQuaid, J. H.: 1978, ‘Development of a Miniature, Rapid Response Carbon Dioxide Sensor’, Lawrence Livermore Lab. Rep. UCRL-52330, 18 pp.Google Scholar
  3. Brach, E. J., Desjardins, R. L., and St. Amour, G. T.: 1981, ‘Open Path CO2 Analyzer’, J. Phys. E: Sci Instrum. 14, 1415–1419.Google Scholar
  4. Buck, A. L.: 1976, ‘The Variable-Path Lyman-Alpha Hygrometer and its Operating Characteristics’, Bull. Amer. Meteorol. Soc. 57, 1113–1118.Google Scholar
  5. Campbell, G. S. and Tanner, B. D.: 1985, ‘A Krypton Hygrometer for Measurement of Atmospheric Water Vapor Concentration’, Proceedings of the 1985 International Symposium on Moisture and Humidity, ISA, Research Triangle Park, Washington, DC, pp. 609–612.Google Scholar
  6. Crawford, T. L., McMillen, R. T., and Dobosy, R. J.: 1990, ‘Development of a “Generic” Mobile Flux Platform with Demonstration on a Small Airplane’, NOAA Technical Memorandum ERL ARL-184.Google Scholar
  7. Hanst, P. L., Wong, N. W., and Bragin, J.: 1982, ‘A Long-Path Infra-Red Study of Los Angeles Smog’, Atmos. Environ. 16, 969–981.Google Scholar
  8. Heikinheimo, M. J., Thurtell, G. W., and Kidd, G. E.: 1989: ‘An Open Path, Fast Response IR Spectrometer for Simultaneous Detection of CO2 and Water Vapor Fluctuations’, J. Atmos. Oceanic Tech. 6, 624–636.Google Scholar
  9. Hicks, B. B., Matt, D. R., and McMillen, R. T.: 1989, ‘A Micrometeorological Investigation of Surface Exchange of O3, SO2 and NO2: A Case Study’, Boundary-Layer Meteorol. 47, 321–336.Google Scholar
  10. Hyson, P. and Hicks, B. B.: 1975, ‘A Single-Beam Infrared Hygrometer for Evaporation Measurement’, J. Appl. Meteorol. 14, 301–307.Google Scholar
  11. Jones, E. P., Ward, T. V., and Zwick, H. H.: 1978, ‘A Fast Response Atmospheric CO2 Sensor for Eddy Correlation Flux Measurements’, Atmospheric Environment, 12, 845–851.Google Scholar
  12. Kaimal, J. C., Gaynor, J. E., Zimmerman, H. A., and Zimmerman, G. A.: 1990, ‘Minimizing Flow Distortion Errors in a Sonic Anemometer’, Boundary-Layer Meteorol. 53, 103–115.Google Scholar
  13. Lumley, J. L. and Panofsky, H. A.: 1964, The Structure of Atmospheric Turbulence, Wiley, New York, 239 pp.Google Scholar
  14. Moore, C. J.: 1983, ‘On the Calibration and Temperature Behavior of Single-Beam Infrared Hygrometers’, Boundary-Layer Meteorol. 25, 245–269.Google Scholar
  15. Ohtaki, E. and Matsui, T.: 1982, ‘Infrared Device for Simultaneous Measurement of Fluctuations of Atmospheric Carbon Dioxide and Water vapor’, Boundary-Layer Meteorol. 24, 109–119.Google Scholar
  16. Park, J. H.: 1977, ‘Atlas of Infrared Absorption Lines, NASA Contractor report 2925’, Scientific and Techical Information Office, NASA.Google Scholar
  17. Raupach, M. R.: 1978, ‘Infrared Fluctuation Hygrometry in the Atmospheric Surface Layer’, Quart. J. R. Meteorol. Soc. 104, 309–322.Google Scholar
  18. Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., McNeill, D. D., Moore, C. J., and Wallace, J. S.: 1988, ‘An Integrated Micrometeorological System for Evaporation Measurement’, Agric. and Forest Meteorol. 43, 295–317.Google Scholar
  19. Tans, P. P., Fung, I. Y., and Takahashi, T.: 1990, ‘Observational Constraints on the Global Atmospheric CO2 Budget’, Science 247, 1431–1438.Google Scholar
  20. Trevitt, A. C. F.: 1986, ‘An Infrared Hygrometer with On-Line Temperature Compensation’, Boundary Layer Meteorol. 34, 157–169.Google Scholar
  21. Webb, E. K., Pearman, G. L., and Leuning, R.: 1980, ‘Correction of Flux Measurements for Density Effects due to Heat and Water Vapour Transfer’, Quart. J. R. Meteorol. Soc. 106, 85–100.Google Scholar
  22. Wesley, M. L., and Hart, R. L.: 1987, ‘Variability of Short Term Eddy-Correlation Estimates of Mass Exchange’;. In B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel, Dordrecht, Holland, pp. 591–612.Google Scholar
  23. Winner, W. E., Mooney, H. A., Williams, K., and von Caemmerer, S.: 1985, ‘Measuring and assessing SO2 effects on photosynthesis and plant growth’, in W. E. Winner, H. A. Mooney and R. A. Goldstein (eds.), Sulfur Dioxide and Vegetation Physiology, Ecology, and Policy Issues, Stanford University Press, Stanford, CA pp. 118–132.Google Scholar
  24. Wyngaard, J. C.: 1973, ‘On Surface Layer Turbulence, pp. 101–149’;. In D. A. Haugen (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, Massachusetts.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • David L. Auble
    • 1
  • Tilden P. Meyers
    • 1
  1. 1.Atmospheric Turbulence and Diffusion DivisionNational Oceanic and Atmospheric Administration, Air Resources LaboratoryOakridgeUSA

Personalised recommendations