, Volume 1, Issue 4, pp 283–290 | Cite as

Identification of metabolites from degradation of naphthalene by a Mycobacterium sp.

  • Ingrid Kelley
  • James P. Freeman
  • Carl E. Cerniglia


A Mycobacterium sp. isolated from oil-contaminated sediments was previously shown to mineralize 55% of the added naphthalene to carbon dioxide after 7 days of incubation. In this paper, we report the initial steps of the degradation of naphthalene by a Mycobacterium sp. as determined by isolation of metabolites and incorporation of oxygen from 18O2 into the metabolites. The results indicate that naphthalene is initially converted to cis- and trans-1,2-dihydroxy-1,2-dihydronaphthalene by dioxygenase and monooxygenase catalyzed reactions, respectively. The ratio of the cis to trans-naphthalene dihydrodiol isomers was approximately 25:1. Thin layer and high pressure liquid chromatographic and mass spectrometric techniques indicated that besides the cis- and trans-1,2-dihydroxy-1,2-dihydronaphthalene, minor amounts of ring cleavage products salicylate and catechol were also formed. Thus the formation of both cis and trans-naphthalene dihydrodiols by the Mycobacterium sp. is unique. The down-stream reactions to ring cleavage products proceed through analogous dioxygenase reactions previously reported for the bacterial degradation of naphthalene.

Key words

bioremediation metabolites microbial degradation naphthalene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Advances Appl. Microbiol. 30: 31–71Google Scholar
  2. Cerniglia CE, Althaus JR, Evans FE, Freeman JP, Mitchum RK & Yang SK (1983) Stereochemistry and evidence for an arene oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem.-Biol. Interactions 44: 119–132Google Scholar
  3. Cerniglia CE & Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl. Environ. Microbiol. 34: 363–370Google Scholar
  4. Cerniglia CE (1978) Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch. Biochem. Biophys. 186: 121–127Google Scholar
  5. Cerniglia CE, Herbert RL, Szaniszlo PJ & Gibson DT (1978) Fungal transformation of naphthalene. Arch. Microbiol. 117: 135–143Google Scholar
  6. Davies JI & Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads. Biochem. J. 91: 251–261Google Scholar
  7. Gibson DT & Subramanian V (1984) Microbial, degradation of aromatic hydrocarbons. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 181–252). Marcel Dekker, New YorkGoogle Scholar
  8. Grimmer G & Pott F (1983) Occurrence of PAH. In: Grimmer G (Ed) Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons (pp 61–128). CRC Press, Boca Raton, FLGoogle Scholar
  9. Groenewegen D & Stolp H (1976) Mikrobieller Abbau von polyzyklischen aromatischen Kohlenwasserstoffen. Zentralbl. Bakteriol. 162: 225–232Google Scholar
  10. Heitkamp MA & Cerniglia CE (1989) Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (Ed) Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment (pp 41–68). CRC Press, Boca Raton, FloridaGoogle Scholar
  11. Heitkamp MA (1986) Microbial degradation of tert-butylphenyl diphenyl phosphate: A comparative microcosm study among five diverse ecosystems. Toxicity Assessment Bulletin 1: 103–122Google Scholar
  12. Heitkamp MA (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54: 1612–1614Google Scholar
  13. Heitkamp MA (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl. Environ. Microbiol. 55: 1968–1973Google Scholar
  14. Heitkamp MA, Franklin W & Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: Isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54: 2549–2555Google Scholar
  15. Heitkamp MA, Freeman JP & Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: Estimates of degradation rates and characterization of metabolites. Appl. Environ. Microbiol. 53: 129–136Google Scholar
  16. Heitkamp MA, Freeman JP, Miller DW & Cerniglia CE (1988) Pyrene degradation by a Mycobacterium sp.: Identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54: 2556–2565Google Scholar
  17. Holder CL, Korfmacher WA, Slikker W, Thompson HC & Gosnell AB (1985) Mass spectral characterization of doxylamine and its rhesus monkey urinary metabolites. Biomed. Mass Spectrometry 12: 151–158Google Scholar
  18. Huckins JN, Petty JD & Heitkamp MA (1984) Modular containers for microcosm and process model studies on the fate and effects of aquatic contaminants. Chemosphere 13: 1329–1341Google Scholar
  19. Jeffrey AM, Yeh HJC, Jerina DM, Patel TR, Davey JF & Gibson DT (1975) Initial reaction of naphthalene by Pseudomonas putida. Biochemistry 14: 575–584Google Scholar
  20. Jerina DM, Daly JW, Jeffrey AM & Gibson DT (1971) Cis-1,2-Dihydroxy-1,2-dihydronaphthalene: A bacterial metabolite from naphthalene. Arch. Biochem. Biophys. 142: 393–396Google Scholar
  21. Kelley I & Cerniglia CE (1991) The metabolism of fluoranthene by a species of Mycobacterium. J. Ind. Microbiol. 1: 19–26Google Scholar
  22. Sitting M (1985) Handbook of Toxic and Hazardous Chemicals and Carcinogens (pp 630–632). Noyes Publications, New JerseyGoogle Scholar
  23. U.S. Environmental Protection Agency (1980A) Naphthalene: Ambient Water Quality Criteria. Wash. D.C.Google Scholar
  24. U.S. Environmental Protection Agency (1980B) Naphthalene, Health and Environmental Effects Profile No. 131, Wash. D.C., Office of Solid WasteGoogle Scholar
  25. Wackett LP, Kwart LD & Gibson DT (1988) Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochem. 27: 1360–1367Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Ingrid Kelley
    • 1
  • James P. Freeman
    • 1
  • Carl E. Cerniglia
    • 1
  1. 1.Food and Drug AdministrationNational Center for Toxicological ResearchJeffersonUSA

Personalised recommendations