Boundary-Layer Meteorology

, Volume 56, Issue 4, pp 401–410 | Cite as

Another look at sonic thermometry

  • J. C. Kaimal
  • J. E. Gaynor
Research Note

Abstract

In this note we reassess the role of sonic thermometry in boundary-layer studies. The sonic temperature signal, when corrected for crosswind velocity contamination, very closely approximates the virtual temperature of air. This variable is needed for many boundary-layer calculations. We describe preliminary tests with a new sonic anemometer-thermometer that performs the velocity correction in real time. Our test results offer new insights into the nature of the velocity error on temperature standard deviations and fluxes. They also draw attention to the high noise threshold that appears as an f+1 rise in the fS(f) spectrum when spectral levels drop below 10-4 °C2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanafusa, T., Fujitani, T., Kobori, Y. and Mitsuta, Y.: 1982, ‘A New Type Sonic Anemometer-Thermometer for Field Operation’, Pap. Meteorol. Geophys. 33, 1–19.Google Scholar
  2. Kaimal, J. C.: 1969, ‘Measurement of Momentum and Heat Flux Variations in the Surface Boundary Layer’, Radio Sci. 4, 1147–1153.Google Scholar
  3. Kaimal, J. C. and Businger, J. A.: 1963, ‘A Continuous Wave Sonic Anemometer-Thermometer’, J. Appl. Meteorol. 2, 156–164.Google Scholar
  4. Kaimal, J. C. and Gaynor, J. E.: 1983, ‘The Boulder Atmospheric Observatory’, J. Appl. Meteorol. 22, 863–880.Google Scholar
  5. Kaimal, J. C., Gaynor, J. E., Zimmerman, H. A. and Zimmerman, G. A.: 1990, ‘Minimizing Flow Distortion Errors in a Sonic Anemometer’, Boundary-Layer Meteorol. 53, 103–115.Google Scholar
  6. May, P. T., Strauch, R. G., Moran, K. P. and Ecklund, W. L.: 1990, ‘Temperature Sounding by RASS with Wind Profiler Radars’, IEEE Trans. Geosci. Remote Sens. 28, 19–28.Google Scholar
  7. Miller, D. C.: 1937, Sound Waves — Their Shape and Speed, The Macmillan Co., New York, 164 pp.Google Scholar
  8. Mitsuta, Y.: 1966, ‘Sonic Anemometer-Thermometer for General Use’, J. Meteorol. Soc. Japan 44, 12–24.Google Scholar
  9. Mitsuta, Y.: 1974, ‘Sonic Anemometer-Thermometer for Atmospheric Turbulence Measurements’, in R. B. Dowdell (ed.), Flow — Its Measurement and Control in Science and Industry, Vol. 1, Instrument Society of America, 341–347.Google Scholar
  10. Priestley, J. T. and Hill, R. J.: 1985, ‘Measuring High-Frequency Humidity, Temperature and Radio Refractive Index in the Surface Layer’, J. Atmos. Oceanic Technol. 2, 233–251.Google Scholar
  11. Schmitt, K. F., Friehe, C. A. and Gibson, C. H.: 1978, ‘Humidity Sensitivity of Atmospheric Temperature Sensors by Salt Contamination’, J. Phys. Oceanogr. 8, 151–161.Google Scholar
  12. Schotanus, P., Nieuwstadt, F. T. M. and DeBruin, H. A. R.: 1983, ‘Temperature Measurement with a Sonic Anemometer and its Application to Heat and Moisture Fluctuations’, Boundary-Layer Meteorol. 26, 81–93.Google Scholar
  13. Suomi, V. E.: 1957, ‘Energy Budget Studies and Development of the Sonic Anemometer for Spectrum Analysis’, AFCRC Tech. Report 56-274, University of Wisconsin, Dept. of Meteorology, 91 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • J. C. Kaimal
    • 1
  • J. E. Gaynor
    • 1
  1. 1.NOAA/ERL/Wave Propagation LaboratoryBoulderUSA

Personalised recommendations