Boundary-Layer Meteorology

, Volume 56, Issue 4, pp 339–358 | Cite as

Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation

  • T. R. Oke
  • G. T. Johnson
  • D. G. Steyn
  • I. D. Watson
Article

Abstract

A simple energy balance model which simulates the thermal regime of urban and rural surfaces under calm, cloudless conditions at night is used to assess the relative importance of the commonly stated causes of urban heat islands. Results show that the effects of street canyon geometry on radiation and of thermal properties on heat storage release, are the primary and almost equal causes on most occasions. In very cold conditions, space heating of buildings can become a dominant cause but this depends on wall insulation. The effects of the urban ‘greenhouse’ and surface emissivity are relatively minor. The model confirms the importance of local control especially the relation between street geometry and the heat island and highlights the importance of rural thermal properties and their ability to produce seasonal variation in the heat island. A possible explanation for the small heat

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnfleld, A. J.: 1982, ‘An Approach to the Estimation of the Surface Radiative Properties and Radiation Budgets of Cities’, Physical Geog. 3, 97–122.Google Scholar
  2. Bahl, H. D. and Padmanabhamurty, B.: 1979, ‘Heat Island Studies at Delhi’, Mausam 30, 119–122.Google Scholar
  3. Barring, L., Mattsson, J. O., Lindqvist, S.: 1985, ‘Canyon Geometry, Street Temperatures and Urban Heat Island in Malmö, Sweden’, J. Climatol. 5, 433–444.Google Scholar
  4. Bowling, S. A. and Benson, C. S.: 1978, ‘Study of the Subarctic Heat Island at Fairbanks, Alaska’, Environ. Monitor. Report No. EPA — 600/4–78–027, US EPA, Research Triangle Park, N.C., 150 pp.Google Scholar
  5. Estournel, C., Vehil, R., Guedalia, D., Fontan, J. and Druilhet, A.: 1983, ‘Observations and Modelling of Downward Radiative Fluxes (Solar and Infra-Red) in Urban/Rural Areas’, J. Appl. Meteorol. 22, 134–142.Google Scholar
  6. Goldreich, Y.: 1984, ‘Urban Topoclimatology’, Progress in Phys. Geog. 8, 336–364.Google Scholar
  7. Hage, K. D.: 1972, ‘Nocturnal Temperatures in Edmonton, Alberta’, J. Appl. Meteorol. 11, 123–129.Google Scholar
  8. Helbig, A.: 1987, ‘Beitrage zur Meteorologie der Stadtatmosphäre’, Abhandlungen des Meteorol. Dienstes der DDR, No. 137, Akademie-Verlag, Berlin, 80 pp.Google Scholar
  9. Howard, L.: 1833, The Climate of London, Vols. I-III, London.Google Scholar
  10. Ishikawa, N., H. Aburakawa and R. Naruse, 1978: ‘Urban-Rural Differences in the Daily Minimum Air Temperature During Nocturnal Radiative Cooling in Sapporo’, Low Temperature Research, Ser. A 36, 121–137.Google Scholar
  11. Jauregui, E.: 1986a, ‘Tropical Urban Climates: Review and Assessment’, in Oke, T. R. (ed.), Urban Climatology and its Applications with Special Regard to Tropical Cities, WMO No. 652, World Meteorol. Organiz., Geneva, 26–45.Google Scholar
  12. Jauregui, E.: 1986b, ‘The urban climate of Mexico City’, in Oke, T. R. (ed.), Urban Climatology and its Applications with Special Regard to Tropical Cities, WMO No. 652, World Meteorol. Organiz., Geneva, pp. 63–86.Google Scholar
  13. Johnson, G. T., Oke, T. R., Lyons, T. J., Steyn, D. G., Watson, I. D. and Voogt, J. A.: 1991, ‘Simulation of Surface Urban Heat Islands, Part 1: Theory and Tests against Field Data’, Boundary-Layer Meteorol. 56, 275–294 (this volume).Google Scholar
  14. Kobayashi, M.: 1982, ‘Influence of Urbanized Atmosphere on Long-Wave Radiation Field at Night’, Geog. Review Japan 55–6, 421–444.Google Scholar
  15. Lee, D. O.: 1979, ‘Influence of Atmospheric Stability and the Urban Heat Island on Urban-Rural Wind Speed Differences’, Atmos. Environ. 13, 1175–1180.Google Scholar
  16. Oguntoyinbo, J. S.: 1986, ‘Some Aspects of the Urban Climates of Tropical Africa’, in Oke, T.R. (ed.), Urban Climatology and its Applications with Special Regard to Tropical Cities, WMO No. 652, World Meteorol. Organiz., Geneva, pp. 110–135.Google Scholar
  17. Oke, T. R.: 1973, ‘City Size and the Urban Heat Island’, Atmos. Environ. 7, 769–779.Google Scholar
  18. Oke, T. R.: 1981, ‘Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations’, J. Climatol. 1, 237–254.Google Scholar
  19. Oke, T. R.: 1982, ‘The Energetic Basis of the Urban Heat Island’, Quart. J. Royal Meteorol. Soc. 108, 1–24.Google Scholar
  20. Oke, T. R.: 1986, ‘Urban Climatology and the Tropical City: an Introduction’, in Oke, T.R. (ed.), Urban Climatology and its Applications with Special Regard to Tropical Cities, WMO No. 652, World Meteorol. Organiz., Geneva, pp. 1–25.Google Scholar
  21. Oke, T. R.: 1987, Boundary Layer Climates, Methuen, London.Google Scholar
  22. Oke, T. R. and Fuggle, R. F.: 1972, ‘Comparison of Urban/Rural Counter and Net Radiation at Night’, Boundary-Layer Meteorol, 2, 290–308.Google Scholar
  23. Oke, T. R. and Maxwell, G. B.: 1975, ‘Urban Heat Island Dynamics in Montreal and Vancouver’, Atmos. Environ. 9, 191–200.Google Scholar
  24. Nakamura, Y. and Oke, T. R.: ‘Wind, Temperature and Stability Conditions in an East-West Oriented Urban Canyon’, Atmos. Environ. 22, 2691–2700.Google Scholar
  25. Park, H.-S.: 1987, ‘Variations in the Urban Heat Island Intensity Affected by Geographical Environments’, Environ. Research Center Papers, No. 11, Univ. Tsukuba, Ibaraki.Google Scholar
  26. Philip, N., Daniel, E., and Krishnamurthy, K.: 1973, ‘Seasonal Variation of Surface Temperature Distribution over Bombay’, Proc. Symp. Environ. Poll., New Delhi, pp. 308–317.Google Scholar
  27. Rastorgueva, G. P.: 1979, ‘Temperaturnyj Rezhim Vozdukha Promyshlennykh Gorodov USSR’, Glavnaya Geofiz. Observ., Trudy No. 436, 111–117.Google Scholar
  28. Roth, M., Oke, T. R. and Emery, W. J.: 1989, ‘Satellite-Derived Urban Heat Islands from Three Coastal Cities and the Utilization of Such Data in Urban Climatology’, Int. J. Remote Sensing 10, 1699–1720.Google Scholar
  29. Sellers, W. D.: 1965, Physical Climatology, Univ. Chicago Press, Chicago.Google Scholar
  30. Taesler, R.: 1980, ‘Studies of the Development and Thermal Structure of the Urban Boundary Layer in Uppsala, Part II, Data Analysis and Results’, Report No. 61, Meteorol. Instit., Univ. Uppsala, Uppsala.Google Scholar
  31. Trewartha, G. T.: 1965, Japan, a Geography, Univ. Wisconsin Press, Madison, Wisconsin.Google Scholar
  32. Tyson, P. D., Du Toit, W. J. F., and Fuggle, R. F.: 1972, ‘Temperature Structure above Cities: Review and Preliminary Findings from the Johannesburg Urban Heat Island Project’, Atmos. Environ. 6, 533–542.Google Scholar
  33. Uno, I., Wakamatsu, S. and Ueda, H.: 1988, ‘Behaviour of the Nocturnal Urban Boundary Layer and Air Pollutants’, J. Japan. Soc. Air Pollut. 23, 103–114.Google Scholar
  34. Voogt, J. A.: 1989, ‘Validation of an Urban Canyon Radiation Model for Nocturnal Long-Wave Radiative Fluxes and the Effect of Surface Geometry on Cooling in Urban Canyons’, M.Sc. Thesis, Dept. Geog., Univ. B.C., Vancouver, B.C.Google Scholar
  35. Yamashita, S., Sekine, K., Shoda, M., Yamashita, K. and Kara, Y.: 1986, ‘On the Relationships between Heat Island and Sky View Factor in the Cities of Tama River Basin, Japan’, Atmos. Environ. 20, 681–686.Google Scholar
  36. Yap, D.: 1975, ‘Seasonal Excess Urban Energy and the Nocturnal Heat Island — Toronto’, Arch. Meteorol. Geoph. Bioklima., Ser. B 23, 68–80.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • T. R. Oke
    • 1
  • G. T. Johnson
    • 2
  • D. G. Steyn
    • 1
  • I. D. Watson
    • 2
  1. 1.Atmospheric Science Programme, Department of GeographyThe University of British ColumbiaVancouverCanada
  2. 2.School of Mathematics, Physics, Computing, and Electronics and School of Earth Sciences, Macquarie UniversityNorth RydeAustralia

Personalised recommendations