Boundary-Layer Meteorology

, Volume 80, Issue 1–2, pp 109–125 | Cite as

Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice

  • Burghard Brümmer
Article

Abstract

During the field experiment ARKTIS 1993 ten cases of boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice in the Spitsbergen region were observed by aircraft over a distance ranging from about 50 km over the ice to about 300 km over the water. The modification depends decisively on the initial conditions over the ice, the boundary conditions at the bottom and top of the boundary layer and on the conditions of the large-scale flow. The modification of the bulk boundary-layer characteristics in relation to these conditions is presented.

Besides the air-sea temperature contrast, the most important role for the boundary-layer modification is played by the stability on top of the boundary layer and by the divergence of the large-scale flow. According to the high variability of these conditions the observed boundary-layer modifications were very variable ranging from 100 to 300 m thick boundary layers with air temperatures between -32 and -22 °C over the ice to thicknesses between 900 and 2200 m and air temperatures between -15 and -5 °C after 300 km fetch over the open water. In most cases the large-scale flow was anticyclonic and divergent over the ice and changed to cyclonic and convergent over the water and an ice-sea breeze was superimposed on it.

The sensible and latent heat fluxes are the dominant terms in the surface energy budget over the open water and ranged between 200 and 700 W m-2 whereas the net longwave radiation is the dominating term over the ice with the heat fluxes only about 10 W m-2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agee, E. M. and Lomax, F. E.: 1978, ‘Structure of the Mixed Layer and Inversion Layer Associated with Patterns of Mesoscale Cellular Convection during AMTEX 75’, J. Atmos. Sci. 35, 2281–2301.Google Scholar
  2. Atlas, D., Walter, B., Chou, S.-H., and Sheu, P. J.: 1986, ‘The Structure of the Unstable Marine Boundary Layer Viewed by Lidar and Aircraft Observations’, J. Atmos. Sci. 43, 1301–1318.Google Scholar
  3. Bechthold, P., Fravalo, C., and Pinty, J. P.: 1992, ‘A Study of aTwo-Dimensional Cloudiness Transition during a Cold-air Outbreak Event’, Boundary-Layer Meteorol. 60, 243–270.Google Scholar
  4. Brummer, B. (ed.), 1993: ‘ARKTIS 1993 — Report on the Field Phase with Examples of Measurements’, Berichte aus dem Zentrum für Meeres- und Klimaforschung, Reihe A, No. 11.Google Scholar
  5. Brümmer, B., Rump, B., and Kruspe, G.: 1992, ‘A Cold-Air Outbreak near Spitsbergen in Springtime — Boundary Layer Modification and Cloud Development’, Boundary-Layer Meteorol. 61, 13–46.Google Scholar
  6. Chou, S.-H. and Zimmerman, J.: 1989: ‘Bivariate Conditional Sampling of Buoyancy Flux during an Intense Cold-Air Outbreak’, Boundary-Layer Meteorol. 46, 93–112.Google Scholar
  7. Chou, S.-H. and Ferguson, M. P.: 1991, ‘Heat Fluxes and Roll Circulations over the Western Gulf Stream during an Intense Cold-Air Outbreak’, Boundary-Layer Meteorol. 55, 255–281.Google Scholar
  8. Hein, P. F. and Brown, R. A.: 1988: ‘Observations of Longitudinal Roll Vortices during Arctic Cold-Air Outbreaks over Open Water’, Boundary-Layer Meteorol. 45, 177–199.Google Scholar
  9. Kantha, L. H. and Mellor, G. L.: 1989, ‘A Numerical Model of the Atmospheric Boundary Layer over a Marginal Ice Zone’, J. Geophys. Res. 94(C4), 4959–4970.Google Scholar
  10. Kellner, G., Wamser, C., and Brown, R. A.: 1987, ‘An Observation of the Planetary Boundary Layer in the Marginal Ice Zone’, J. Geophys. Res. 92(C7), 6955–6965.Google Scholar
  11. Kelly, R. D.: 1982, ‘A Simple Doppler Radar Study of Horizontal Roll Convection in a Lake-Effect Snow Storm’, J. Atmos. Sci. 39, 1521–1531.Google Scholar
  12. Kelly, R. D.: 1984, ‘Horizontal Roll and Boundary Layer Interrelationships Observed over Lake Michigan’, J. Atmos. Sci. 41, 1816–1826.Google Scholar
  13. Lenschow, D. H.: 1973, ‘Two Examples of Planetary Boundary Layer Modification over the Great Lakes’, J. Atmos. Sci. 30, 568–581.Google Scholar
  14. Miura, Y.: 1986, ‘Aspect Ratios of Longitudinal Rolls and Convection Cells Observed during Cold-Air Outbreaks’, J. Atmos. Sci. 43, 26–39.Google Scholar
  15. Ninomiya, K. and Akiyama, T.: 1976, ‘Structure and Heat Energy Budget of Mixed Layer Capped by Inversion during the Period of Polar Outbreak over Kuroshio Region’, J. Meteorol. Soc. Japan 54, 160–174.Google Scholar
  16. Overland, J. E., Reynolds, R. M., and Pease, C. H.: 1983, ‘A Model of the Atmospheric Boundary Layer over the Marginal Ice Zone’, J. Geophys. Res. 88(C5), 2836–2840.Google Scholar
  17. Rothermel, J. and Agee, E. M.: 1980, ‘Aircraft Investigation of Mesoscale Cellular Convection during AMTEX 75’, J. Atmos. Sci. 37, 1027–1040.Google Scholar
  18. Sheu, P. J. and Agee, E. M.: 1977, ‘Kinematic Analysis and Air-Sea Heat Flux Associated with Mesoscale Cellular Convection during AMTEX 75’, J. Atmos. Sci. 34, 793–801.Google Scholar
  19. Stage, S. A. and Businger, J. A.: 1981, ‘A Model for Entrainment into a Cloud-Topped Marine Boundary Layer. Part I: Model Description and Application to a Cold-Air Outbreak Episode’, J. Atmos. Sci. 38, 2213–2229.Google Scholar
  20. Streten, N. A.: 1975, ‘Cloud Cell Size and Pattern Evolution in Arctic Air Advection over the North Pacific’, Arch. Met. Geoph. Biokl. A24, 213–228.Google Scholar
  21. Stull, R.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, 452 pp.Google Scholar
  22. Sun, W.-Y. and Hsu, W.-R.: 1988, ‘Numerical Study of a Cold-Air Outbreak over the Ocean’, J. Atmos. Sci. 45, 1205–1227.Google Scholar
  23. Sun, W.-Y. and Yildirim, A.: 1989, ‘Air Mass Modification over Lake Michigan’, Boundary-Layer Meteorol. 48, 345–360.Google Scholar
  24. Walter, B. A.: 1980, ‘Wintertime Observations of Roll Clouds over the Bering Sea’, Mon. Wea. Rev. 108, 2024–2031.Google Scholar
  25. Walter, B. A.: 1989, ‘A Study of the Planetary Boundary Layer over the Polynia Downwind of St. Lawrence Island in the Bering Sea using Aircraft Data’, Boundary-Layer Meteorol. 48, 255–282.Google Scholar
  26. Wayland, R. J. and Raman, S.: 1989, ‘Mean and Turbulent Structures of a Baroclinic Marine Boundary Layer during the 28 January 1986 Cold-Air Outbreak (GALE 86)’, Boundary-Layer Meteorol. 48, 227–254.Google Scholar
  27. Yuen, C.-W.: 1985, ‘Simulations of Cold Surges over Oceans with Applications to AMTEX '75’, J. Atmos. Sci. 42, 135–154.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Burghard Brümmer
    • 1
  1. 1.Meteorological Institute, University of HamburgHamburgGermany

Personalised recommendations