Boundary-Layer Meteorology

, Volume 36, Issue 4, pp 371–394 | Cite as

Thermal asymmetry and cross-valley circulation in a small alpine valley

  • Barbara Hennemuth


Wind observations from a small Alpine valley are used to investigate the problem of cross-valley winds. The observed daytime windfield is a superposition of dynamically and thermally forced cross-winds. Prevailing cross-winds above the valley result in a recirculation cell above the lee slope. The return flow is strengthened or weakened by thermal effects which induce a wind that blows from the shaded to the sunny side of the valley. The reaction time of the thermally induced cross-winds is only 4 min. The horizontal and vertical motions of the cross-valley circulation transport heat in such a way that the insolation differences between the two sides of the valley are nearly equalized.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, R. C. and Thompson, R. O. R. Y.: 1980, ‘Valley Ventilation by Cross Winds’, J. Fluid Mech. 96, 757–767.Google Scholar
  2. Brehm, M. and Freytag, C.: 1982, ‘Erosion of the Night-Time Thermal Circulation in an Alpine Valley’, Arch. Met. Geoph. Biocl. B31, 331–352.Google Scholar
  3. Brühl, Chr. and Zdunkowski, W.: 1983, ‘An Approximate Calculation Method for Parallel and Diffuse Solar Irradiances on Inclined Surfaces in the Presence of Obstructing Mountains or Buildings’, Arch. Met. Geoph. Biocl. B32, 111–129.Google Scholar
  4. Defant, F.: 1949, ‘Zur Theorie der Hangwinde nebst Bemerkungen zur Theorie der Berg- und Talwinde’, Arch. Met. Geoph. Biocl. A1, 421–450 (English translation: Whiteman, C. D. and E. Dreiseitl: 1984, Alpine Meteorology: Translations of Selected Contributions by A. Wagner, E. Ekhart, and F. Defant, ASCOT-84–3/PNL-5141, June 1984, Pacific Northwest Laboratory, Richland, Washington, 121 pp.).Google Scholar
  5. Egger, J.: 1981, ‘Thermally Forced Circulations in a Valley’, Geophys. Astrophys. Fluid Dynamics 17, 255–279.Google Scholar
  6. Freytag, C.: 1985, ‘MERKUR-Results: Aspects of the Temperature Field and the Energy Budget in a Large Alpine Valley During Mountain and Valley Wind’, Contr. Atm. Phys. 58, 458–476.Google Scholar
  7. Gleeson, T. A.: 1951, ‘On the Theory of Cross-Valley Winds Arising from Differential Heating of the Slopes’, J. Meteorol. 8, 398–405.Google Scholar
  8. Hennemuth, B.: 1985, ‘Temperature Field and Energy Budget of a Small Alpine Valley’, Contr. Atmosph. Phys. 58, 545–559.Google Scholar
  9. Hennemuth, B.: 1986, ‘Heating of a Small Alpine Valley’, Meteorol. Atm. Phys. 35 (in press).Google Scholar
  10. Hennemuth, B. and Köhler, U.: 1984, ‘Estimation of the Energy Balance of the Dischma Valley’, Arch. Meteorol. Geophys. Biocl. B34, 97–119.Google Scholar
  11. Hennemuth, B. and Schmidt, H.: 1985, ‘Wind Phenomena in the Dischma Valley during DISKUS’, Arch. Meteorol. Geophys. Biocl. B35, 361–387.Google Scholar
  12. MacHattie, L. B.: 1968, ‘Kananaskis Valley Winds in Summer’, J. Appl. Meteorol. 7, 348–352.Google Scholar
  13. Moll, E.: 1935, ‘Aerologische Untersuchungen periodischer Gebirgswinde in V-förmigen Alpentälern’, Beitr. Phys. d. Atmosph. 22, 177–199.Google Scholar
  14. Nickus, U. and Vergeiner, J.: 1984, ‘The Thermal Structure of the Inn Valley Atmosphere’, Arch. Meteorol. Geophys. Biocl. A33, 199–215.Google Scholar
  15. Reiter, R., Müller, H., Sladkovic, R., and Munzert, K.: 1983, ‘Aerologische Untersuchungen der tagesperiodischen Gebirgswinde unter besonderer Berücksichtigung des Windfeldes im Talquerschnitt’, Meteorol. Rdschau 36, 225–242.Google Scholar
  16. Sturman, A. P., Fitzsimons, S. J., and Holland, L. M.: 1985, ‘Local Winds in the Southern Alps, New Zealand’, J. Climatol. 5, 145–160.Google Scholar
  17. Tampieri, F. and Hunt, J. C. R.: 1985, ‘Two-Dimensional Stratified Fluid Flow over Valleys: Linear Theory and Laboratory Investigation’, Boundary-Layer Meteorol. 32, 257–279.Google Scholar
  18. Tang, W.: 1976, ‘Theoretical Study of Cross-Valley Wind Circulation’, Arch. Meteorol. Geophys. Biocl. A25, 1–18.Google Scholar
  19. Tang, W. and Peng, L.: 1983, ‘A Numerical Model of Slopewind Circulation Regimes in a V-shaped Valley’, Arch. Meteorol. Geophys. Biocl. B32, 361–380.Google Scholar
  20. Urfer, Ch.: 1967, ‘Zeitliche Gesetzmäβigkeiten des Berg- und Talwindes’, Veröff. Schweiz. Met. Z.-anstatt 4, 246–252.Google Scholar
  21. Urfer-Henneberger, Ch.: 1970, ‘Neuere Beobachtungen Über die Entwicklung des Schönwetterwindsystems in einem V-förmigen Alpental (Dischmatal bei Davos)’, Arch. Meteorol. Geophys. Biocl. B18, 21–42.Google Scholar
  22. Vergeiner, J.: 1982, ‘Eine energetische Theorie der Hangwinde’, Ann. Meteorol. NF 19, 189–191.Google Scholar
  23. Whiteman, C. D.: 1985, ‘Cross-Valley Structure of the Valley Atmosphere During the Temperature Inversion Breakup Period’, J. Climate Appl. Meteorol. (submitted).Google Scholar
  24. Yoshino, M. M.: 1975, Climate in a Small Area, University of Tokyo Press, Tokyo.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Barbara Hennemuth
    • 1
  1. 1.Meteorologisches Institut, Universität MünchenMünchenF.R.G.

Personalised recommendations