Advertisement

Vegetatio

, Volume 99, Issue 1, pp 137–145 | Cite as

The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L.

  • J. Terradas
  • R. Savé
Part C: Water Relationship

Abstract

Several aspects of plant-water relationships and canopy behaviour have been studied over several years in two experimental areas of Quercus ilex L. forests in the northeastern Iberian Peninsula. Water requirements, water status limits necessary for a positive carbon budget and the functional canopy behaviour in the face of abiotic stress were evaluated, in order to determine which factors influence the geographical range of these forests.

The results showed that holm oak has a conservative water use, a low cuticular transpiration, a high capacity for osmotic adjustement and xerophytic characteristics in leaf morphology and canopy arrangement. More than 440 mm of annual rainfall are required for these forests to persist. Summer drought and winter cold are thus important abiotic factors limiting the distribution of Quercus ilex. In both cases, drought stress is involved.

Keywords

Canopy behaviour Evapotranspiration Gaseous exchange Leaf morphology Plant-water relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Aussenac, G. & Vallette, J. C. 1982. Comportement hydrique estival de Cedrus atlantica Manetti, Quercus ilex L. et Quercus pubescens Will. et de divers pins dans le Mont Ventoux. Ann. Sc. For. 39: 41–62.Google Scholar
  2. Berger, A., Eckardt, F. E., Méthy, M., Heim, G. & Sauvezon, R. 1977. Interception de l'énergie rayonnate, échange de CO2, régime hydrique et production chez différents types de végétation sous climat méditerranéen. In: Moyse, A. Les processus de la production végétale primaire. Gauthier-Villars, Paris.Google Scholar
  3. Boardman, N. K. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28: 355–377.Google Scholar
  4. Bolòs, O. 1983. La vegetació del Montseny. Servei de Pares Naturals, Diputació de Barcelona (ISBN 84-500-8374-5), Barcelona.Google Scholar
  5. Comín, M. P., Escarré, A., Gracia, C. A., Lledó, M. J., Rabella, R., Savé, R. & Terradas, J. 1987. Water use by Quercus ilex in forests near Barcelona, Spain. In: Tenhunen, J. D., Catarino, F. M., Lange, O. L., and Oeche, W. C. Plant response to stress: Functional analysis in Mediterranean ecosystems. Ser. G. Ecological Sciences, vol. 15, Springer-Verlag, Berlin.Google Scholar
  6. Correia, M. J., Chaves, M. M. C. & Pereira, J. S. 1990. Afternoon depression in photosynthesis in grapewine leaves. Evidence for a high light stress effect. J. Exp. Bot. 41 (226): 417–426.Google Scholar
  7. Field, C. & Mooney, H. A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish, T. J. On the economy of plant form and function, Cambridge Univ. Press, Cambridge.Google Scholar
  8. Folch, R. 1981. La vegetació dels Països Catalans. Ketrés (ISBN 84-85256-20-4), Barcelona.Google Scholar
  9. Hinckley, T. M., Lassoie, J. P. & Running, S. W. 1978. Temporal and spatial variations in the water status of forest trees. Forest Sci. Monogr. 20: 1–72.Google Scholar
  10. Ilijanic, L. & Gracanin, M. 1972. Zum wasserhaushalt einiger mediterraner pflanzen. Ber. Deutsch. Bot. Ges. Bd. 85 (7–9): 329–339.Google Scholar
  11. Jarvis, P. G. & McNaughton, K. G. 1986. Stomatal control of transpiration scaling up from leaf to region. Adv. Ecol. Res. 15: 1–49.Google Scholar
  12. Jones, H. G. 1980. Interaction and integration of adaptative responses to water stress: the implications of an unpredictable environment. In: Turner, N. C. and Kramer, P. J.. Adaptations of plants to water and high temperature stress. ISBN 0-471-05372-4. Wiley Interscience Publ., New York.Google Scholar
  13. Kyriakopoulos, E. & Larcher, W. 1976. Saugspannungsdiagramm fur austrocknende Bläter von Quercus ilex L. Z. Pflanzenphysiol. 77: 268–271.Google Scholar
  14. Kyriakopoulos, E. & Richter, H. 1977. A comparison of methods for the determination of water status in Quercus ilex L. Z. Pflanzenphysiol. 82: 14–27.Google Scholar
  15. Larcher, W. 1960. Transpiration and photosynthesis of detached leaves and shoots of Quercus pubescens and Quercus ilex during dessication under standard conditions. Bull. Res. Council of Israel, vol. 8D (3–4): 213–224.Google Scholar
  16. Larcher, W. 1980. Physiological plant ecology. ISBN 3-540-09795-3, Springer-Verlag, Berlin.Google Scholar
  17. Larcher, W.. 1981. Low temperature effects on Mediterranean sclerophylls: an unconventional viewpoint. In: Margaris, N. S. and Mooney, H. A.. Components of productivity of Mediterranean-climate regions. Basic and applied aspects. Dr W. Junk publ., The Hague.Google Scholar
  18. Lossaint, P. & Rapp, M. 1978. La forêt méditerranéenne de chênes verts. In: Lamotte, M. and Bourlière, F.. Problèmes d'Ecologie: Ecosystèmes terrestres, pp. 129–185. Masson, Paris.Google Scholar
  19. Mansfield, T. A. 1987. Hormones as regulators of water balance. In: Davies, P. S. (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff Publ., Dordrecht.Google Scholar
  20. Margaris, S. N. 1981. Adaptative strategies in plants dominating Mediterranean-type ecosystems. In: Di, Castri, F., Goodall, D. W. and Specht, R. L. Ecosystems of the world 11: Mediterranean-type shrublands. Elsevier, New York.Google Scholar
  21. Mitrakos, K. 1980. A theory for mediterranean plant-life. Oecol. Plant. 1 (15) 3: 245–252.Google Scholar
  22. Medina, E. 1971. Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxidismutase activity of leaves of Atriplex hastata ssp. hastata. Carnegie Inst. Washington Yearbook 70: 551–559.Google Scholar
  23. Medina, E. 1981. Nitrogen content, leaf structure and photosynthesis in higher plants: a report to the UNEP study group on photosynthesis and bioproductivity, IVIC, Caracas, Venezuela.Google Scholar
  24. Mooney, H. A. & Gulmon, S. L. 1979. Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: Solbrig, O. T., Jain, S., Johnson, G. B. and Raven, P. H. Topics in the plant population biology. Columbia Univ. Press, New York.Google Scholar
  25. Morgan, J. M. 1984. Osmorregulatio and water stress in higher plants. Ann. Rev. Plant Physiol. 35: 299–319.Google Scholar
  26. Morris, J. T. 1989. Modelling light distribution within the canopy of the marsh grass Spartina alterniflora as a function of canopy biomass and solar angle. Agric. and Forest Meteorol. 46: 349–361.Google Scholar
  27. Orshan, G. (ed.) 1988. Plant phenomorphology in Mediterranean-type ecosystems. Geobotany ser. Junk Publ., The Hague. 416 pp.Google Scholar
  28. Rabella, R., Savé, R. & Terradas. J. 1983. Conducta hídrica vertical del encinar montano de La Castanya (Montseny). V Reunión SEFV, Murcia, september.Google Scholar
  29. Robichaux, R. H., Holsinger, K. E. & Morse, S. R. 1986. Turgor maintenance in hawaian Dubautia species: the role of variation in tissue osmotic and clastic properties. In: Givnish, T. J.. On the economy of plant form and function. Cambridge Univ. Press, Cambridge.Google Scholar
  30. Rodà, F. 1983. Biogeoquimica de les aigües de pluja i dedrenatge en alguns ecosistemes forestals del Montseny. Ph D Thesis Univ. Autònoma de Barcelona.Google Scholar
  31. Sakai, A. & Larcher, W. 1987. Frost survival of plants. Responses and adaptations to freezing stress. In Ecol. Studies 62, ISBN 3-540-17332-3, Springer-Verlag, Berlin.Google Scholar
  32. Sala, A., Burriel, J.A. & Tenhunen, J. D. 1990. Spatial and temporal controls on transpiration within a watershed dominated by Quercus ilex. In: Proc. Quercus ilex L. Ecosystems: function, dynamics and management, Montpellier-Barcelona, Sept. 1990.Google Scholar
  33. Sala, A., Picolo, R. & Piñol, J. 1988. Effectos del frío en las relaciones hidricas de Quercus ilex en la serra de Prades (Tarragona). Options Médit. ser. A. 3: 57–62.Google Scholar
  34. Sala, A., Piñol, J., Sabaté, S. & Montero, E. 1989. Relaciones hídricas en Quercus ilex. Variaciones en el espacio y en el tiempo de los potenciales hídricos. Proc. VIII Reunión Nac. SEFV. I Congr. Hispano-Luso de Fisiología Vegetal, Barcelona.Google Scholar
  35. Savé, R, 1986. Ecofisiologia de les relacions hídriques de l'alzina al Montseny, PhD thesis, Universitat Autònoma de Barcelona.Google Scholar
  36. Savé, R., Rabella, R. Gascón, E. & Terradas, J. 1981. Transpiration and diffusion resistance of leaves of Quercus ilex L. at La Castanya (Montseny, Catalunya, NE Spain). Proc. Symp. Dynamics and Management of Mediterranean-type ecosystems, San Diego, California.Google Scholar
  37. Savé, R., Rabella, R. & Terradas, J. 1988. Effects of low temperature on Quercus ilex ssp. ilex water relations. In Di, Castri, F., Floret, Ch., Rambal, S. and Roy, J.. Time-scale and water stress. Proc. 5th Int. Conf. Mediterranean Ecosystems (MEDECOS), IUBS, Paris.Google Scholar
  38. Scherbakova, A. & Kocperska-Palacz, A. 1980. Modification of stress tolerance by dehidratation pretreatment in winter rape hypocotyls. Physiol. Plant. 48: 560–563.Google Scholar
  39. Shachori, A. Y. & Michaeli, A. 1964. Water yied of forest, maquis and grass coverts in semiarid regions. A literature review. In Eckardt, F. D. (ed.) Methodology of plant ecophysiology. UNESCO, Paris, pp. 467–477.Google Scholar
  40. Sobrado, M. A. 1986. Aspects of tissue water relations and seasonal changes of leaf water potential components of evergreen and deciduous species coexisting in tropical dry forest. Eccologia (Berl.) 68: 413–416.Google Scholar
  41. Tranquillini, W. 1976. Water relations and alpine timberline. In: Lange, O. L., Kappen, L. and Schulze, E. D.. Water and plant life, Ecol. Studies vol. 19, Springer-Verlag, Berlin.Google Scholar
  42. Tranquillini, W. 1982. Frost-drought and its ecological significance. In: Lange, O. L., Nobel, P. S. Osmond, C. R. and Ziegler, H. Physiological plant ecology II. Encycl. Plant Physiol. vol. 12B. Springer-Verlag, Berlin.Google Scholar
  43. Tyree, M. T. & Richter, H. 1981. Alternative methods of analyzing water potential isotherms: some cautions and clarifications. I. The impact on non-ideality and of some experimental errors. J. Exp. Bot. 32 (128): 643–653.Google Scholar
  44. Tyree, M. T. & Richter, H. 1982. Alternate methods of analyzing water potential isotherms: some cautions and clarifications. II. Curvelinearity in water potential isotherms. Can. J. Bot. 60: 911–916.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • J. Terradas
    • 1
  • R. Savé
    • 2
  1. 1.Centre de Recerca Ecològica i Aplicacions ForestalsUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
  2. 2.Dpt. tecnologia HortícolaInstitut de Recerca i Tecnologia Agroalimentària (IRTA)Cabrils (Barcelona)Spain

Personalised recommendations