Vegetatio

, Volume 99, Issue 1, pp 61–68

Factors affecting radial growth of Quercus ilex L. in a coppice stand in southern France

  • M. Cartan-Son
  • C. Floret
  • M. J. Galan
  • M. Grandjanny
  • E. Le Floc'h
  • M. Maistre
  • P. Perret
  • F. Romane
Part B: Structure, Productivity and Dynamic

Abstract

Quercus ilex woodlands in the south of France are characterized by low productivity. Several hypotheses have been put forward to provide an explanation for this phenomenon: (i) senescence of coppice stumps; (ii) limited availability of water and nutrient resources; (iii) intershoot and inter-plant competition. To test some of these hypotheses, growth response to rainfall distribution and nutrient supply (NPK), and the influence of edge effects after clear-cutting were studied in a 40-yr old stand.

Curves of radial increment were compared with precipitation and umbrothermic patterns for the 6 years studied. Water availability apparently accounted for some inter-annual differences in growth. However, it was not mean annual rainfall, but rather rainfall occurring in late spring-summer (June, July) which played a large role in determining radial growth. Radial growth was also increased by nutrient supply. Its positive effect was strengthened by favourable rainfall in 1987. Edge-effects following a clear-cut were also found, both in the first year and in four succeeding years following the cut. This comprised in greater radial growth rate for all shoots, with reduced repression of smaller shoots by the larger ones. The effect decreased over a distance of 10 m with increasing distance from the cut field. This could be explained by increased availability of water, nutrient resources, and light.

Key words

Mediterranean climate Clear-cutting Edge effect Nutrient supply Productivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschmann, H. 1973. Man's impact on the several regions with mediterranean climates. In: Di, Castri, F. & Mooney, H. (eds), Mediterranean type ecosystems. Origin and structure Springer, New York. Ecological Studies 7: 363–371.Google Scholar
  2. Aschmann, H. 1984. A restrictive definition of mediterranean climates. Bull. Soc. Bot. Fr., Actual. Bot. 131: 21–30.Google Scholar
  3. Aussenac, G. & Valette, J. C., 1982. Comportement hydrique estival de Cedrus atlantica Manetti, Quercus ilex L. et Quercus pubescens Willd. et de divers pins dans le Mont Ventoux. Ann. Sci. Forest. 39 (1): 41–62.Google Scholar
  4. Aymard, M. & Fredon, J. J. 1986. Etude des relations entre une racine et les rejets de la souche chez Castanea sativa Mill., Ann. Sci. For. 3: 351–364.Google Scholar
  5. Bedeneau, M. & Pages, L. 1984. Répartition de la sève brute entre les jeunes rejets de bouleau étudié à l'aide d'un phytocide. Ann. Sci. For. 41 (2): 237–247.Google Scholar
  6. Bougette, E. 1950. Histoire de Puéchabon. Imprimerie des Beaux-Arts. Lodève, 294 pp.Google Scholar
  7. Bottner, P. 1982. Evolution des sols et conditions climatiques méditerranéennes. Ecologia Mediterranea 8 (1/2): 115–133.Google Scholar
  8. Braun-Blanquet, J., 1936. La forêt d'Yeuse languedocienne (Quercion ilicis). Monographie phytosociologique. Mémoires de la Société d'Etude des Sciences. Naturelles de Nîmes 5: 5–147.Google Scholar
  9. Carlier, C. 1987. Etude de la sectorisation des souches de châtaignier à l'aide d'eau tritiée. Ann. Sci. For. 1: 85–102.Google Scholar
  10. Daget, P., 1977. Le bioclimat méditerranéen: caractères généraux, modes de caractérisation. Vegetatio 34 (1): 1–20.Google Scholar
  11. Destremeau, D. & Roderbourg 1968–69. Eléments pour l'étude du traitement en taillis de la forêt de chêne-liège de Mamora. Répartition de la sève entre les rejets. Ann. Rech. For. Maroc 11: 237–242.Google Scholar
  12. Di, Castri, F. & Mooney, H. (eds) 1973. Mediterrancan type ecosystems. Origin and structure. Springer, New York. Ecological Studies 7.Google Scholar
  13. Ducrey, M. 1988. Sylviculture des taillis de chêne vert. Pratiques traditionnelles et problématiques des recherches récentes. Revue Forestière Française 4: 302–313.Google Scholar
  14. Emberger, L. 1955. Une classification biogéographique des climats. Rec. Trav. Lab. Bot. Géol. Zool. Univ. Montpellier, série Bot. 7: 3–43.Google Scholar
  15. Floret, C., Galan, M. J., Le, Floc'h, E., Leprince, F. & Romane, F., 1989a. Description of plant annual cycles (France). In: Orshan, G. (ed), Plant pheno-morphological studies in mediterranean type ecosystems. Junk Pub. The Hague, Geobotany serie, 12: 9–97.Google Scholar
  16. Floret, C., Galan, M. J., Le, Floc'h, E., Rapp, M. & Romane, F. 1989b. Organisation de la structure, de la biomasse et de la minéralomasse d'un taillis ouvert de chêne vert (Quercus ilex L.). Acta Oecologica, Oecol. Plant. 10(3): 245–262.Google Scholar
  17. Floret, C., Galan, M. J., Le, Floc'h, E. & Romane, F. 1987. Variations of biological and ‘monocharacters’ spectra in Mediterranean forest ecosystems influenced by man. In: Schubert, R. & Hilbig, W. (eds), Erlassung und Bewertung anthropogene Vegetationsveränderungen, T. 3. Martin-Luther Univ., Halle (Germany), Wiss. Beiträge/46 (P31): 110–126.Google Scholar
  18. Floret, C. & Romance, F. 1988. Ecomorphological characters: France (Puéchabon). In: Specht, R. L. (ed). Mediterranean-type ecosystems. A data source book. Kluwer Ac: Pub., Dordrecht, Tasks for Vegetation Science 19: 50.Google Scholar
  19. Fritts, H. C. 1982. The climate-growth response. In: Hughes, M. K., Kelly, P. M., Pilcher, J. R. & Lamarche, V. C. (eds), Climate from tree rings. Cambridge University Press, pp. 33–38.Google Scholar
  20. Gaussen, H. 1954. Théorie et classification des climats et microclimats. 8ème Congr. Internat. Bot. Paris: 125–130.Google Scholar
  21. Harrington, C. 1984. Factors influencing initial sprouting of red alder. Can. J. For. Res. 14: 357–361.Google Scholar
  22. Hétier, J. P. & Lilin, C. 1989. Les espaces boisés méditerranéens et leurs ressources. Forêt méditerranéenne XI, 3: 226–237.Google Scholar
  23. Kauppi, A., Rinne, P. & Ferm, A. 1988. Sprouting ability and significance for coppicing of dormant buds on Betula pubescens Ehrh. stumps. Scand. J. For. Res. 3: 343–354.Google Scholar
  24. Landsberg, J. J. 1986. Physiological ecology of forest production. Academic Press, 198 pp.Google Scholar
  25. Larsson, S. & Bengston, C. 1980. Effects of water stress on growth in Scots pine. Technical report 24, Swedish Coniferous Forest project.Google Scholar
  26. Le, Houérou, H. N., 1981. Impact of man and his animals on mediterranean vegetation. In: Di, Castri, F., Goodall, D. W. & Specht, R. L. (eds), Mediterranean-Type Shrublands, Elsevier Scientific Publishing Company, Amsterdam: 479–521.Google Scholar
  27. Leonardi, S. & Rapp, M. 1980. Biomasse et composition minérale de Quercus ilex L. du Monte Minardo (Etna). Archivio Botanico et Biogeogafico It. 56(1/2): 70–84.Google Scholar
  28. Marchand, H. 1990. Les forêts méditerranéennes. Enjeux et perspectives. Plant d'action pour la Méditerranée. Les Fascicules du Plan Bleu. 2. Economica, PNUD, Paris, 108 pp.Google Scholar
  29. Miglioretti, F. 1983. Phyto-écologie des peuplements à Quercus ilex L. et Quercus pubescens Willd. en Gardiole de Rians (Var). Approche méthodologique pour évaluer la phytomasse des taillis de chêne vert. Thèse 3ème cycle, Fac. Sci. & Techn. St Jérôme, Aix-Marseille, 74 pp. + annexes.Google Scholar
  30. Miglioretti, F. 1987. Ecologie et dendrométrie des peuplements purs et mélangés de chêne vert (Quercus ilex L.) et chêne pubescent (Quercus pubescens Willd.) en Provence. Bases méthodologiques, modèles de croissance et de production (application à la forêt de la Gardiole de Rians, Var). Thèse ès-sc., Fac. Sci. & Techn. St Jérôme, Aix-Marscille, 291 pp.Google Scholar
  31. Moser, E. B., Saxton, A. M., & Pezeshki, S. R. 1990. Repeated measures analysis of variance: application to tree research. Can. J. For. Res., 20: 524–535.Google Scholar
  32. Pons, A. & Quézel, P. 1985. The history of the flora and vegetation and past and present human disturbance in the mediterrancan area. In: Gomez-Campo, C. (ed), Plant conservation in the mediterranean area. Junk Publ., Dordrecht. Geobotany7: 25–43.Google Scholar
  33. Riedacker, A. 1973. Influence du traitement en taillis sur la croissance et la morphogenèse aériennes et souterraines d'Eucalyptus camaldulensis Kehn. au Maroc. Thèse, Univ. Clermont-Ferrand, 122 pp.Google Scholar
  34. Specht, R. L. 1969. A comparison of the sclerophyllous vegetation characteristics of mediterranean type climates in France. California and Southern Australia. I. Structure, morphology and succession. Austr. J. Bot. 17: 277–292.Google Scholar
  35. Specht, R. L. 1988. Mediterranean-type ecosystems. A data source book. Kluwer Academic Publishers, 248 pp.Google Scholar
  36. Specht, R. L. & Moll, E. J., 1983. Heathland and sclerophyllous shrubslands. An overview. In: Kruger, F. J., Mitchell, D. T. & Jarvin, J. U. M. (eds), Mediterranean-Type Ecosystems. The role of nutrients. Springer, New York, Ecological Studies 43: 41–65.Google Scholar
  37. Specht, R. L., Moll, E. J., Pressinger, F. & Sommerville, J. E. M. 1983. Moisture regime and nutrient control of seasonal growth in mediterranean ecosystems. In: Kruger, F. J., Mitchell, D. T. & Jarvin, J. U. M. (eds). Mediterranean-Type Ecosystems. The role of nutrients. Springer. New York, Ecological Studies 43: 120–132.Google Scholar
  38. Tenhunen, J. D., Reynolds, J. F., Lange, O., Dougherty, R. L., Harley, P. C., Kummerow, J. & Rambal, S., 1989. QUINTA: a physiologically-based growth simulator for drought adapted woody plant species. In: Pereira J. S. & Landsberg J. J. (eds) Biomass production by fast growing trees. Kluwer A. P.: 135–168.Google Scholar
  39. Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. & Webb, D. A., 1964–1980. Flora curopaea. Cambridge University Press. 5 vol., 1. (1964), XXXII + 464 pp., 2. (1968), XXVII + 455 pp., 3. (1972), XXIX + 370 pp., 4. (1976), XXIX + 505 pp., and 5. (1980), XXXVI + 452 pp.Google Scholar
  40. Walter, H., Harnickell, E. & Mueller-Dombois, D. 1975. Climate-diagram maps of the individual continents and the ecological climate regions of the earth. Springer-Verlag. Berlin, 36 pp.Google Scholar
  41. Walter, H. & Lieth. H. unter Mitwirkung von Harnickel, E. 1967. Klimadiagramm-Welt-Atlas. VEB Gustav Fischer Verlag, Jena.Google Scholar
  42. Zhang, S. H. 1987. Contribution à l'étude de la croissance en diamètre du chêne vert (Quercus ilex L.) en relation avec le climat. Thèse 3ème cycle. Un. Sc. & Techn. Lang., Montpellier, 183 pp.Google Scholar
  43. Zhang, S. H. & Romane, F. 1988. The diameter growth of Quercus ilex L. and the interannual variability of climatic characteristics. In: Di, Castri, F., Floret, C., Rambal, S. & Roy, J. (eds). Time scales and water stress. I.U.B.S., Paris: 391–399.Google Scholar
  44. Zhang, S. H. & Romane, F. 1991. Variations de la croissance radiale de Quercus ilex L. en fonction du climat. Ann. Sci. For. 48: 225–234.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • M. Cartan-Son
    • 1
  • C. Floret
    • 1
  • M. J. Galan
    • 1
  • M. Grandjanny
    • 1
  • E. Le Floc'h
    • 1
  • M. Maistre
    • 1
  • P. Perret
    • 1
  • F. Romane
    • 1
  1. 1.Centre d'Ecologie Fonctionnelle et Évolutive Louis EmbergerCNRSMontpellier Cedex 1France

Personalised recommendations