Advertisement

Vegetatio

, Volume 99, Issue 1, pp 51–59 | Cite as

Structure, biomass and production of a resprouted holm-oak (Quercus ilex L.) forest in NE Spain

  • M. J. Lledó
  • J. R. Sánchez
  • J. Bellot
  • J. Boronat
  • J. J. Ibañez
  • A. Escarré
Part B: Structure, Productivity and Dynamic

Abstract

When considered as a compartment of nutrients (biomass) and as a flux between compartments (production) vegetation plays an important role in the biogeochemical forest research that is carried out at the Prades research station in two adjacent catchments: L'Avic (51.6 ha) and La Teula (38.5 ha). The forest density at the Prades site, considering both the tree and shrub layers, is 9182 stems ha−1, with 4527 stems ha−1 being the tree layer. The predominant species is Quercus ilex with Arbutus unedo and Phillyrea media less common. The structure of the population, estimated by grouping the numbers of the stems in classes of 2.5 cm, shows a distribution which conforms, in both catchments, to a negative exponential equation following the Yoda law. The distribution observed at different altitudes shows great heterogeneity, the number of stems of Q. ilex increases with altitude, from 4000 stems ha−1 at 800 m, to 14000 stems ha−1 at 1000 m of altitude. The upper and the lower parts of the watershed show differences in forest production that explain this variation. In this paper the influence of human activities and physical factors on the origin of this structure is discussed. The tree and shrub biomass was calculated by applying allometric regressions for the three predominant species and has been estimated as 113.2 t ha−1. The tree layer accounts for 92%. Net production was calculated from annual increases (by differences between the 1981 and 1986 basal area measures) of the woody part and the litterfall. The above-ground net production was about 6.5 t ha−1 year−1, 95.4% of it being from trees and shrubs and only 4.6% from grasses.

Key words

Mediterranean forest Prades Forest structure Species distribution Human activities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellot, J. & Escarré, A. 1989. Efecto del estado de desarrollo del bosque mediterráneo sobre la distribución del agua de lluvia y nutrientes en el suelo forestal. Options Mediterranées. Série Séminaires. no 3 221–225.Google Scholar
  2. Bichard, D. 1982. Essai sur les relations entre milieu et productivité du chêne verte au Luberon. Thèse Docteur. 3o cycle en Ecologie. Université de Droit, d'Economie et des Sciences d'Aix-Marseille, Faculté des Sciences et Techniques St. Jerôme.Google Scholar
  3. Bormann, F. H. & Likens, G. E. 1967. Nutrient cycling. Sience 155: 424–429.Google Scholar
  4. Bruno, F., Gratani, L. & Manes, F. 1976–1977. Primi dati sulla biomasa e produttività della lecceta di Castelporziano (Roma): biomassa e produzione di Quercus ilex. Annali di Botanica 35–36: (109–118).Google Scholar
  5. Canadell, J., Riba, M. & Andres, P. 1988. Biomass Equations for Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry 61 (2): 137–147.Google Scholar
  6. Canadell, J. & Rodà, F. 1989. Biomasa y mineralomasa subterránea del encinar de La Castanya, Montseny. Options Méditerranéennes. Serie A: Séminaires Méditerranéens 3: 13–18.Google Scholar
  7. Cannell, M. G. R. 1982. World forest biomass and primary production data. Academic. Press. London 391 pp.Google Scholar
  8. Escarré, A., Gracia, C. & Terradas, J. 1984. Ecología del bosque esclerófilo mediterráneo. Investigación y Ciencia 95: 69–78.Google Scholar
  9. Ferrés, Ll. 1984. Biomasa, producción y mineralomasa del encinar de La Castanya (Montseny). Tesis Doctoral. Universidad Autonoma de Barcelona.Google Scholar
  10. Floret, C., Galan, M. J., Le, Floc'h, E., Rapp, M. & Romane, F. 1989. Organisation de la structure, de la biomasse et de la minéralomasse d'un taillis ouvert de chêne vert (Quercus ilex L.) Acta Oecologica. Oecol. Plant., 1989, Vol. 10, no 3, pp. 245–262.Google Scholar
  11. Folch, R. & Velasco, E. 1978. Dades cartogràfiques per a l'estudi de la vegetació de les Muntanyes de Prades. Separata del volum de ponències i comunicacions de la XVIII Assemblea intercomarcal d'Estudiosos. L'Espluga de Francolí. 1974. Editorial Barcino.Google Scholar
  12. Leonardi, S. & Rapp, S. 1990. Organic matter distribution and fluxes within a holm oak (Q. ilex L.) stand in the Etna vulcano. A systhesis. International Workshop Quercus ilex L. Ecosystems: function, dynamics and management, Montpellier 17–19 Sept., Barcelona 20–21 Sept 1990.Google Scholar
  13. Lieth, H. & Whittaker, R. H. 1975. Primary Productivity of the Biosphere. Springer-Verlag. pp. 339.Google Scholar
  14. Lossaint, P. & Rapp, M. 1971. Repartition de la matière organique, productivité et cycles des éléments minéraux dans des écosystèmes de climat méditerranéen. In: P. Duvigncaud (ed.). Productivité des ecosystèmes forestiers. Actes coll. Bruxelles, Unesco.Google Scholar
  15. Lledó, M. J. 1990. Compartimentos y flujos biogeoquímicos en una cuenca de encinar del Monte Poblet. Tesis doctoral. Universidad de Alicante.Google Scholar
  16. Mayor, X. 1990. El paper dels nutrients com a factors limitans de la producció primaria de l'alzinar de la conca del Torrent de la Mina (Montseny). Treball de Mestratge. Universitat Autonòma de Barcelona.Google Scholar
  17. Miglioretti, F. 1987. Contribution à l'étude de la production des taillis de Chêne vert en forêt de la Gardiole de Rians (Var). Ann. Sci. For. 44 (2) pp. 227–242.Google Scholar
  18. Piñol, J. & Sala, A. 1989. Hidrologia i hidroquimica de quatre conques foresta de la Serra de Prades. Estudi de la transpiracio a l'alzinar de L'Avic. Memoria final dels ajuts a projectes de recerca a investigadors joves de la CIRIT. Any 1987. 107 pp. Barcelona.Google Scholar
  19. Reichle, D. E. (ed.). 1981. Dynamic properties of forest ecosystems. Cambridge University Press. 683 pp.Google Scholar
  20. Susmel, L., Viola, F. & Bassato, G. 1976. Ecologia della lecceta de Supramonte di Orgosolo (Sardegna Centro-Orientale). Cedam Case Editrici Dott. Antonio Milani. Padova.Google Scholar
  21. Terradas, J., Prat, N., Escarré, A. & Margalef, R. 1989. Història natural dels Països Catalans. 14. Sistemes Naturals. 500 pp.Google Scholar
  22. Weller, D. E. 1987. A reevaluation of the 3/2 power rule of plant self-thinning. Ecological Monographs 57 (1): 23–43.Google Scholar
  23. Westoby, M. 1984. The self-thinning rule. Advances in Ecological Research 14: 167–225.Google Scholar
  24. White, J. 1981. The allometric interpretation of the self-thinning rule. Journal of Theoretical Biology 89: 475–485.Google Scholar
  25. White, J. & Harper, J. L. 1970. Correlated changes in plant size and number in plant populations. Journal of Ecology 58: 467–485.Google Scholar
  26. Yoda, K., Kira, T., Ogawa, H. & Hozumi, H. 1963. Selfthinning in overcrowded pure stan under cultivated and natural conditions. Journal of Biology Osaka City University 14: 107–129.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • M. J. Lledó
    • 1
  • J. R. Sánchez
    • 1
  • J. Bellot
    • 1
  • J. Boronat
    • 2
  • J. J. Ibañez
    • 3
  • A. Escarré
    • 1
  1. 1.Departmento de Ciencias Ambientales y Recursos NaturalesUniversidad de AlicanteAlicanteSpain
  2. 2.Instituto de Bachillerato Virgen del RemedioAlicanteSpain
  3. 3.Centre de Recerca Ecològica i Aplicacions ForestalsUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations