Advertisement

Aquaculture International

, Volume 3, Issue 3, pp 205–216 | Cite as

Utilization of carotenoids from various sources by rainbow trout: muscle colour, carotenoid digestibility and retention

  • Georges Choubert
  • José-Carlos G. Milicua
  • Ramon Gomez
  • Sophie Sancé
  • Hélène Petit
  • Geneviève Nègre-Sadargues
  • René Castillo
  • Jean-Paul Trilles
Papers

Rainbow trout (Oncorhynchus mykiss) with a mean (sd) weight of 120 (2) g were fed diets supplemented with astaxanthin extracted from the yeast Phaffia rhodozyma (OY1 = 50 mg carotenoids kg−1 feed, OY2 = 100 mg carotenoids kg−1 feed), astaxanthin (AX = 100 mg astaxanthin kg−1 feed) and canthaxanthin (CX = 100 mg canthaxanthin kg−1 feed) for 4 weeks. Muscle analyses at the end of the experiment indicated a significantly higher carotenoid concentration in the AX group, while CX and OY1 groups were similar in spite of the differences in dietary concentration. The measure of total muscle colour difference (ΔE*ab) between initial samples and 4 week ones was higher for the AX fish group but showed no significant difference between OY1, OY2, and CX. The hue and the reflectance ratio (R650:R510) of fish muscle increased in proportion to carotenoid intake. Digestibility (ADC) of yeast astaxanthin in OY1 and OY2 groups was significantly higher than that in the AX group. Canthaxanthin ADC was about one sixth of that of astaxanthin (AX group). Carotenoid retention in the muscle, expressed as a percentage of carotenoid intake, was higher for the AX group than that recorded for OY1 and OY2. According to ADC, carotenoid retention showed a marked lower value for the CX group. Muscle retentions were similar for astaxanthins from both sources.

Keywords

Astaxanthin Canthaxanthin Carotenoids Colour Digestibility Rainbow trout (Oncorhynchus mykissRetention Yeast (Phaffia rhodozyma

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrewes, A.G., Phaff, H.J. and Starr, M.P. (1976) Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15, 1003–1007.Google Scholar
  2. Andrewes, A.G. and Starr, M.P. (1976) (3R, 3′R)-astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry 15, 1009–1011.Google Scholar
  3. Bergot, F. (1981) Etude de l'utilisation digestive d'une cellulose purifiée chez la truite arc-en-ciel (Salmo gairdneri) et la carpe commune (Cyprinus carpio). Reproduction Nutrition Développement 21, 83–93.Google Scholar
  4. Bolin, D.W., King, R.P. and Klosterman, E.N. (1952) A simplified method for the determination of chromic oxide (Cr2O3) when used as an index substance. Science 116, 634–635.Google Scholar
  5. Choubert, G. (1982) Method for colour assessment of canthaxanthin pigmented rainbow trout. (Salmo gairdneri Rich.). Science des Aliments 2, 451–463.Google Scholar
  6. Choubert, G. and de la Noüe, J. (1987) Utilization of invertebrate biomasses for rainbow trout (Salmo gairdneri Rich) pigmentation: apparent digestibility of carotenoids. Archiv für Hydrobiologie 110, 461–468.Google Scholar
  7. Choubert, G., de la Noüe, J. and Luquet, P. (1982) Digestibility in fish: improved device for the automatic collection of feces. Aquaculture 29, 185–189.Google Scholar
  8. Choubert, G. and Luquet, P. (1979) Influence de l'agglomération et du stockage des aliments composés sur leur teneur en canthaxanthine: conséquences sur la digestibilité et la fixation de ce pigment chez la truite arc-en-ciel. Annales de Zootechnie 28, 145–157.Google Scholar
  9. Choubert, G. and Luquet, P. (1982) Fixation et rétention musculaire de la canthaxanthine par la truite arc-en-ciel. Annales de Zootechnie 31, 1–10.Google Scholar
  10. Choubert, G. and Storebakken, T. (1989) Dose response to astaxanthin and canthaxanthin pigmentation of rainbow trout fed various dietary carotenoid concentrations. Aquaculture 81, 69–77.Google Scholar
  11. Choubert, G. and Storebakken, T. (1990) Carotenoids digestibility in fish: effect of pigment, dose, salinity, feeding rate. Abstr. 9th. Int. Symp. Carotenoids, Kyoto, Japan, 20–25 May 1990.Google Scholar
  12. de la Noüe, J., Choubert, G., Pagniez, B., Blanc, J.M. and Luquet, P. (1980) Digestibilité chez la truite arc-en-ciel (Salmo gairdneri) lors de l'adaptation à un nouveau régime alimentaire. Canadian Journal of Fisheries and Aquatic Sciences 37, 2218–2224.Google Scholar
  13. Duncan, D.B. (1975) t-tests and intervals for comparisons suggested by data. Biometrics 31, 339–359.Google Scholar
  14. EIFAC (European Inland Fisheries Advisory Commission) (1971) Salmon and trout feeds and feeding. FAO Technical Paper 12, 1–29.Google Scholar
  15. Fiasson, J.L., Arpin, N. and Lebreton, P. (1969) Sur l'analyse qualitative et quantitative des caroténoïdes naturels. Chimie Analytique 51, 227–236.Google Scholar
  16. Foss, P., Storebakken, T., Schiedt, K., Liaaen-Jensen, S., Austreng, E. and Streiff, K. (1984) Carotenoids in diets for salmonids. I. Pigmentation of rainbow trout with the individual optical isomers of astaxanthin in comparison with canthaxanthin. Aquaculture 41, 213–226.Google Scholar
  17. Francis, F.J. and Clydesdale, F.M. (1975) Food Colorimetry: Theory and Applications. The AVI Publishing Company, Inc.: Westport, CT, USA. pp. 467.Google Scholar
  18. Gentles, A. and Haard, N.F. (1991) Pigmentation of rainbow trout with enzyme-treated and spray-dried Phaffia rhodozyma. The Progressive Fish-Culturist 53, 1–6.Google Scholar
  19. Goodwin, T.W. (1951) Carotenoids in fish. Biochemical Society Symposia 6, 63–81.Google Scholar
  20. Guillou, A., Choubert, G. and de la Noüe, J. (1993) Separation and determination of carotenoids, retinol, retinal, and their dehydro forms by isocratic reversed-phase HPLC. Food Chemistry 476, 93–99.Google Scholar
  21. Johnson, E.A. and An, G-H. (1991) Astaxanthin from microbial sources. Critical Reviews in Biotechnology 11, 297–326.Google Scholar
  22. Johnson, E.A., Conklin, D.E. and Lewis, M.J. (1977) The yeast Phaffia rhodozyma as a dietary pigment source for salmonids and crustaceans. Journal of the Fisheries Research Board of Canada 34, 2417–2421.Google Scholar
  23. Johnson, E.A. and Lewis, M.J. (1979) Astaxanthin formation by the yeast Phaffia rhodozyma. Journal of General Microbiology 115, 173–183.Google Scholar
  24. Johnson, E.A., Villa, T.G. and Lewis, M.J. (1980) Phaffia rhodozyma as an astaxanthin source in salmonid diets. Aquaculture 20, 123–134.Google Scholar
  25. Johnson, E.A., Villa, T.G., Lewis, M.J. and Phaff, H.J. (1978) Simple method for the isolation of astaxanthin from the basidiomycetous yeast Phaffia rhodozyma. Applied Environmental Microbiology 35, 1155–1159.Google Scholar
  26. Luquet, P. (1971) Efficacité des protéines en relation avec leur taux d'incorporation dans l'alimentation de la truite arc-en-ciel. Annales d'Hydrobiologie 2, 175–186.Google Scholar
  27. Manz, U. (1983) Pigmenting carotenoids, analytical methods. Roche Information Animal Nutrition, 1864, pp. 56.Google Scholar
  28. Maynard, L.A. and Loosli, J.K. (1969) Animal Nutrition 6th edition, McGraw-Hill: New-York, USA. pp. 613.Google Scholar
  29. Meyers, S.P. (1994) Developments in world aquaculture, feed formulations, and role of carotenoids. Pure and Applied Chemistry 66, 1069–1076.Google Scholar
  30. Nelis, H.J. and De Leenheer, A.P. (1991) Microbial sources of carotenoid pigments used in foods and feeds. Journal of Applied Bacteriology 70, 181–191.Google Scholar
  31. Osadca, M., Araujo, M. and de Ritter, E. (1972) Determination of canthaxanthin in concentrates and feeds. Journal of the Association of Official Analytical Chemists 55, 110–113.Google Scholar
  32. SAS (1985) SAS/DSTAT Guide for Personal Computers, 6th edition SAS Inst. Inc.: Cary, USA. pp. 470.Google Scholar
  33. Schiedt, K., Vecchi, M. and Glinz, E. (1986) Astaxanthin and its metabolites in wild rainbow trout. (Salmo gairdneri R.). Comparative Biochemistry and Physiology 83B, 9–12.Google Scholar
  34. Schmidt, P.J. and Cuthbert, R.M. (1969) Color sorting of raw salmon. Food Technology 23, 232–234.Google Scholar
  35. Skrede, G. and Storebakken, T. (1986a) Instrumental colour analysis of farmed and wild Atlantic salmon when raw, baked and smoked. Aquaculture 53, 279–286.Google Scholar
  36. Skrede, G. and Storebakken, T. (1986b) Characteristics of color in raw, baked and smoked wild and pen-reared Atlantic salmon. Journal of Food Science 51, 804–808.Google Scholar
  37. Spyridakis, P., Métailler, R., Gabaudan, J. and Riaza, A. (1989) Studies on nutrient digestibility in European sea bass Dicentrarchus labrax. I. Methodological aspects concerning faeces collection. Aquaculture 77, 61–70.Google Scholar
  38. Torrissen, O.J. (1989) Pigmentation of salmonids: Interactions of astaxanthin and canthaxanthin on pigment deposition in rainbow trout. Aquaculture 79, 363–374.Google Scholar
  39. Torrissen, O.J. and Braekkan, O.R. (1979) The utilization of astaxanthin forms by rainbow trout (Salmo gairdneri). In: Proceeding of the World Symposium on Finfish Nutrition and Fishfeed Technology (eds, J.E. Halver and K. Tiews) Hamburg, Germany, 20–23 June 1978, Vol. II, Heenemann: Berlin, Germany, pp. 377–382.Google Scholar
  40. Torrissen, O.J., Hardy, R.W., Shearer, K.D., Scott, T.M. and Stone, F.E. (1990) Effect of dietary canthaxanthin level and lipid level on apparent digestibility coefficients for canthaxanthin in rainbow trout (Onchorhynchus mykiss). Aquaculture 88, 351–362.Google Scholar
  41. Windell, J.T., Foltz, J.W. and Sarokon, J.W. (1978) Methods of fecal collection and nutrient leaching in digestibility studies. The Progressive Fish-Culturist 40, 51–59.Google Scholar
  42. Wyszecki, G. and Stiles, W.S. (1967) Color Science. Wiley: New-York, USA. pp. 628.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Georges Choubert
    • 1
  • José-Carlos G. Milicua
    • 2
  • Ramon Gomez
    • 3
  • Sophie Sancé
    • 4
  • Hélène Petit
    • 4
  • Geneviève Nègre-Sadargues
    • 4
  • René Castillo
    • 4
  • Jean-Paul Trilles
    • 4
  1. 1.Unité mixte INRA/IFREMERLaboratoire de Nutrition des Poissons, Station d'HydrobiologieSaint-Pée-sur-NivelleFrance
  2. 2.Departamento de Bioquimica, Facultad de CienciasUniversidad del Pais VascoBilbaoSpain
  3. 3.Departamento de Technologia de los Alimentos, Facultad de FarmaciaUniversidad del Pais VascoVitoriaSpain
  4. 4.Laboratoire d'Ecophysiologie des Invertébrés, Université de Montpellier II, Sciences et Techniques du Languedoc, Place Eugène BataillonMontpellier Cedex 5France

Personalised recommendations