Boundary-Layer Meteorology

, Volume 17, Issue 2, pp 247–264 | Cite as

An observational study of the structure of the nocturnal boundary layer

  • L. Mahrt
  • R. C. Heald
  • D. H. Lenschow
  • B. B. Stankov
  • IB Troen


In an effort to describe the basic vertical structure of the nocturnal boundary layer, observations from four experiments are analyzed. During the night, the depth of significant cooling appears to increase with time while the depth of the turbulence and height of the low level wind maximum tend to remain constant or decrease with time. Since the inversion layer extends above the low level wind maximum and shear is small in the region of the low level jet, the Richardson number reaches a maximum at the jet level and then decreases again with height. As a result, turbulence is observed to be a minimum at the height of the low level wind maximum and then increases again above this height.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André, J. C., De Moor, G., Lacarrere, P., Therry, G., and du Vachat, R.: 1978, ‘Modeling the 24 Hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.Google Scholar
  2. Blackadar, A. K.: 1957, ‘Boundary-Layer Wind Maxima and their Significance for the Growth of Nocturnal Inversions’, Bull. Am. Meteorol. Soc. 38, 283–290.Google Scholar
  3. Blackadar, A. K.: 1976, ‘Modeling the Nocturnal Boundary Layer’, Reprints Third Symp. Atmospheric Turbulence, Diffusion and Air Quality, Raleigh, American Meteorological Society, pp. 46–49.Google Scholar
  4. Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.Google Scholar
  5. Buajitti, K. and Blackadar, A. K.: 1957, ‘Theoretical Studies of Diurnal Wind-Structure Variations in the Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 83, 486–500.Google Scholar
  6. Businger, J. and Arya, S. P. S.: 1974, ‘Heights of the Mixed Layer in the Stably Stratified Planetary Boundary Layer’, Advan. Geophys. 18A, 73-92. Academic Press.Google Scholar
  7. Clarke, R. H., Dyer, A. J., Brooks, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary-Layer Data’, Technical Paper No. 19, Division of Meteorological Physics, CSIRO, Aspendale, Australia, 340 pp.Google Scholar
  8. Clarke, R. H. and Hess, G. D.: 1973, ‘Appropriate Scaling for Velocity and Temperature in the Planetary Boundary Layer’, J. Atmos. Sci. 30, 1346–1353.Google Scholar
  9. Csanady, G. T.: 1972, ‘Geostrophic Drag, Heat and Mass Transfer Coefficients for the Diabatic Ekman Layer’, J. Atmos. Sci. 29, 488–496.Google Scholar
  10. Deardorff, J. W.: 1972, ‘Rate of Growth of the Nocturnal Boundary Layer’, Proc. of the Symposium on Air Pollution, Turbulence and Diffusion, New Mexico, December 1971, pp. 183-190 (H. W. Church and R. E. Luna, editors).Google Scholar
  11. Delage, Y.: 1974, ‘A Numerical Study of the Nocturnal Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 100, 351–364.Google Scholar
  12. Kristensen, L. and Panofsky, H. A.: 1976, ‘Climatology of Wind Direction Fluctuations at Risø’, J. Appl. Meteorol. 15, 1279–1283.Google Scholar
  13. Lanczos, C.: 1956, Applied Analysis, Prentice Hall, Inc., Englewood Cliffs, N.J., 539 pp.Google Scholar
  14. Lenschow, D. H., Stankov, B. B., and Mahrt, L.: 1979}, ‘The Rapid Morning Boundary Layer Transition’, Submitted to J. Atmos. Sci. Google Scholar
  15. Lettau, H.: 1957, ‘Small to Large Scale Features of Boundary Layer Structure over Mountain Slopes’, Proceedings of the Symposium on Mountain Meteorology, 26 June 1957, Fort Collins, Colorado.Google Scholar
  16. Lettau, H. and Davidson, B.: 1957, Exploring the Atmosphere's First Mile, two vols, Pergammon Press, New York and London.Google Scholar
  17. Mahrt, L. and Heald, R.: 1979, ‘Comment on Determining height of the nocturnal Boundary layer’, J. Appl. Meteor. 18, 383.Google Scholar
  18. Mahrt, L. and Schwerdtfeger, W.: 1970, ‘Ekman Spirals for Exponential Thermal Wind’, Boundary-Layer Meteorol. 1, 137–145.Google Scholar
  19. Melgarejo, J. W. and Deardorff, J. W.: 1974, ‘Stability Functions for the Boundary Layer Resistance Laws Based on Observed Boundary-Layer Heights’, J. Atmos. Sci. 31, 1324–1333.Google Scholar
  20. Merrill, John T.: 1977, ‘Observational and Theoretical Study of Shear Instability in the Air Flow Near the Ground’, J. Atmos. Sci. 34, 911–921.Google Scholar
  21. Wippermann, F.: 1973, ‘Numerical Study on the Effects Controlling the Low-level Jet’, Beit. Phys. Atmos. 46, 137–154.Google Scholar
  22. Wyngaard, J. C.: 1975, ‘Modeling the Planetary Boundary Layer-Extension to the Stable Case’, Boundary Layer Meteorol. 9, 441–460.Google Scholar
  23. Yamada, T.: 1978, ‘Prediction of the Nocturnal Surface Inversion Height’, J. Appl. Meteorol. 18, 526–531.Google Scholar
  24. Yamada, T. and Mellor, G.: 1975, ‘A Simulation of the Wangara Atmospheric Boundary Layer Data’, J. Atmos. Sci. 32, 2309–2329.Google Scholar
  25. Yu, T. W.: 1978, ‘Determining Height of the Nocturnal Boundary Layer’, J. Appl. Meteorol. 17, 28–33.Google Scholar
  26. Zeman, Otto: 1979, ‘Parameterization of the Dynamics of Stable Boundary Layers and Nocturnal Jets’, J. Atmos. Sci. 36, 792–804.Google Scholar
  27. Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman boundary Layer’, Boundary Layer Meteorol. 3, 141–145.Google Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • L. Mahrt
    • 1
  • R. C. Heald
    • 1
  • D. H. Lenschow
    • 2
  • B. B. Stankov
    • 2
  • IB Troen
    • 3
  1. 1.Department of Atmospheric SciencesOregon State UniversityCorvallisUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Department of Meteorology and PhysicsRisø National LaboratoryRoskildeDenmark

Personalised recommendations