Boundary-Layer Meteorology

, Volume 18, Issue 1, pp 107–127 | Cite as

The aqueous thermal boundary layer

  • Kristina B. Katsaros


This article reviews the available data, measurement techniques, and present understanding of the millimeter thick aqueous thermal boundary layer. A temperature difference between the surface and lower strata, δT, of the order of a few tenths to −1 °C have been observed. Techniques ranging from miniature mercury thermometers and electrical point sensors to optical interferometry and infrared radiometry have been employed. Many processes influence the temperature structure in this thin boundary layer. Among them are: the net upward heat flux due to evaporation and sensible heat transfer; infrared and solar radiation; and the turbulence near the interface due to wind mixing, wave breaking and current shear. Presence of solute and surface-active materials stimulate or dampen these mixing processes thereby influencing boundary-layer thickness and temperature structure.


Heat Transfer Mercury Boundary Layer Heat Flux Solar Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, L. J., Arking, A., Bandeen, W. R., Shenk, W. E., and Wexler, R.: 1975, ‘Meteorological Satellite Accomplishments’, Rev. Geophys. Space Phys. 13, 737–745.Google Scholar
  2. Ball, F. K.: 1954, ‘Sea Surface Temperature’, Australian J. Physics 7, 649–652.Google Scholar
  3. Bénard, H.: 1901, ‘Les toubillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent’, Ann. Chim. Phys. 11, 1261–1271.Google Scholar
  4. Berg, J. C., Acrivos, A., and Boudart, M.: 1966, ‘Evaporative Convection’, Adv. Chem. Engin. 6, 61–123.Google Scholar
  5. Bjerknes, J.: 1969, ‘Atmospheric Teleconnections from the Equatorial Pacific’, Monthly Weather Rev. 97, 163–172.Google Scholar
  6. Boudreau, R. D.: 1965, ‘Skin Temperature of the Sea as Determined by Radiometer’, Ref. 65–15T, A & M Proj. 286, Texas A & M Research Foundation, College Station, Texas, 68 pp.Google Scholar
  7. Busse, F. H. and Whitehead, J. A.: 1974, ‘Oscillatory and Collective Instabilities in Large Prandtl Number Convection’, J. Fluid Mech. 66, 67.Google Scholar
  8. Caldwell, D. R. and Elliott, W. P.: 1971, ‘Surface Stresses Produced by Rainfall’, J. Phys. Oceanog. 1, 145–148.Google Scholar
  9. Carroll, J. J. III: 1971, ‘The Structure of Turbulent Convection’, Ph.D. Thesis, Department of Meteorology, University of California, Los Angeles, California.Google Scholar
  10. Carslaw, H. S. and Jaeger, J. C.: 1959, Conduction of Heat in Solids, 2nd edn., Clarendon Press, Oxford.Google Scholar
  11. Chang, J. H. and Wagner, R. N.: 1975, ‘Laboratory Measurement of Surface Temperature Fluctuations Induced by Small Amplitude Surface Waves’, J. Geophys. Res. 80, 2677–2687.Google Scholar
  12. Chernousko, Yu. L.: 1971, ‘Laboratory Investigation of Microconvention’, Izv. Atmospheric and Ocean Phys. 7, 1096–1098.Google Scholar
  13. Chernousko, Yu. L. and Shumilov, A. V.: 1971, ‘Evaporation and Microconvection in a Thin Surface Layer’, Oceanology 9, 812–816.Google Scholar
  14. Chu, T. Y. and Goldstein, R. J.: 1973, ‘Turbulent Convection in a Horizontal Layer of Water’, J. Fluid Mech. 60, 141–159.Google Scholar
  15. Clauss, E., Hinzpeter, H., and Mueller-Glewe, J.: 1970, ‘Messungen zur Temperaturstruktur im Wasser an der Gränzfläche Ozean-Atmosphäre’, ‘Meteor’ Forsch. Ergebnisse, Reihe B., 90–94.Google Scholar
  16. Coantic, M.: 1977, ‘Les echanges de masse a traverse l'interface ocean-atmosphere: mechanismes hydro et aerodynamiques a Petite Echelle’, Report from Institut de Mecanique Statistique de la Turbulence, Laboratoire Associé au C.N.R.S., 12, Avenue du Général Leclerc, 13003, Marseille, 60 pp.Google Scholar
  17. Crapper, G. D.: 1957, ‘An Exact Solution for Progressive Capillary Waves of Arbitrary Amplitude’, J. Fluid Mech. 2, 532–540.Google Scholar
  18. Danckwerts, P. V.: 1951, ‘Significance of Liquid Film Coefficients in Gas Absorption’, Ind. Eng. Chem. 43, 1460–1467.Google Scholar
  19. Deardorff, J. W. and Willis, G. E.: 1967, ‘Investigation of Turbulent Thermal Convection Between Horizontal Plates’, J. Fluid Mech. 28, 675–704.Google Scholar
  20. Defant, A. and Ertel, H.: 1939, ‘Durch Niederschlaege Verursachte Stoerungen des Salzgehaltes im Ozean und deren Ausgleich durch Turbulenz’, Abhandl. Preuss. Akademie der Wissenschaften, Math. Naturw. Klasse Nr 10, Berlin 1939.Google Scholar
  21. Elder, J. W.: 1969, ‘The Temporal Development of a Model of High Rayleigh Number Convection’, J. Fluid Mech. 35, 417–457.Google Scholar
  22. Ewing, G. C. and McAlister, E. D.: 1960, ‘On the Thermal Boundary Layer of the Ocean’, Science 131, 1374–1376.Google Scholar
  23. Fitzjarrald, D. E.: 1976, ‘An Experimental Study of Turbulent Convection in Air’, J. Fluid Mech. 73, 693–719.Google Scholar
  24. Foster, T. D.: 1971, ‘Intermittent Convection’, Geophys. Fluid Dyn 2, 201–217.Google Scholar
  25. Grassl, M. and Hinzpeter, H.: 1975, ‘The Cool Skin of the Ocean’, GATE Report 14, Vol. II, World Meteorological Organization, International Council of Scientific Unions, Geneva, 229–239.Google Scholar
  26. Hasse, L.: 1963, ‘On the Cooling of the Sea Surface by Evaporation and Heat Exchange’, Tellus 15, 363–366.Google Scholar
  27. Hasse, L.: 1971, ‘The Sea Surface Temperature Deviation and the Heat Flow at the Sea-Air Interface’, Boundary-Layer Meteorol. 1, 368–379.Google Scholar
  28. Haussler, W.: 1956, ‘Ueber Temperaturprofile Beiderseits einer Verdunstenden Wasserflaeche’, Wiss. Z. Tech. Hochsch. Dresden 5, 435–450.Google Scholar
  29. Hill, R. H.: 1970, ‘Laboratory Measurements of Heat Transfer, Wind Velocity Profiles and Temperature Structure at an Air/Water Interface’, Naval Research Report 7212, 31 pp.Google Scholar
  30. Holladay, C. G. and O'Brien, J. J.: 1975, ‘Mesoscale Variability of Sea Surface Temperatures’, J. Phys. Oceanog. 5, 761–772.Google Scholar
  31. Howard, L. N.: 1966, ‘Convection at High Rayleigh Number’, Proceedings of the Eleventh International Congress of Applied Mechanics, Munich (Germany) (ed. by H. Goertler), 1109–1115.Google Scholar
  32. Jarvis, N. L.: 1962, ‘The Effect of Monomolecular Films on Surface Temperature and Convective Motion at the Water/Air Interface’, J. Colloid Sci. 17, 512–522.Google Scholar
  33. Katsaros, K. B.: 1973, ‘Supercooling at the Surface of an Arctic Lead’, J. Phys. Oceanog. 3, 482–486.Google Scholar
  34. Katsaros, K. B.: 1976a, ‘The Sea Surface Temperature Deviation at very Low Wind Speeds: Is There a Limit?’, Tellus 29, 229–239.Google Scholar
  35. Katsaros, K. B.: 1976b, ‘Effects of Precipitation on the Eddy Exchange in a Wind Driven Sea’, Dynamics of Atmospheres and Oceans 1, 99–126.Google Scholar
  36. Katsaros, K. B.: 1978, ‘Turbulent Free Convection in Water: Some Characteristics Revealed by Visualization’, J. Phys. Oceanog. 8, 613–626.Google Scholar
  37. Katsaros, K. B. and Buettner, K. J. K.: 1969, ‘Influence of Rainfall on Temperature and Salinity at the Ocean Surface’, J. Appl. Meteorol. 8, 15–18.Google Scholar
  38. Katsaros, K. B. and Businger, J. A.: 1973, ‘Comments on the Determination of the Total Heat Flux from the Sea with a Two-wave Length Radiometer as Developed by McAlister’, J. Geophys. Res. 78, 1964–1969.Google Scholar
  39. Katsaros, K. B. and Liu, W. T.: 1974, ‘Supercooling at a Free Salt Water Surface in the Laboratory’, J. Phys. Oceanog. 4, 654–658.Google Scholar
  40. Katsaros, K. B., Liu, W. T., Businger, J. A., and Tillman, J. E.: 1977, ‘Heat Transport and Thermal Structure in the Interfacial Boundary Layer Measured in an Open Tank of Water in Turbulent Free Convection’, J. Fluid Mech. 83, 311–335.Google Scholar
  41. Katsaros, K. B., Shaw, W. J., and Drummond, K.: ‘Laboratory Experiments on the Interaction Between Surface Waves and Free Convection in Water’, in Proceedings of NATO Symposium on Turbulent Fluxes through the Sea Surface, Wave Dynamics and Prediction, Marseille, September, 1977.Google Scholar
  42. Khundzhua, G. G. and Andreyev, Ye. G.: 1974, ‘An Experimental Study of Heat Exchange Between the Ocean and the Atmosphere in Small-scale Interaction’, Izv. Atmosph. Oceanic Phys. 10, 1110–1113 (in Russian).Google Scholar
  43. Khundzhua, G. G., Gusev, A. M., Andreyev, Ye. G., Gurov, V. V., Skorokhvatov, N. A.: 1978, ‘Structure of the Cold Surface Film of the Ocean and Heat Transfer Between the Ocean and the Atmosphere’, Izv. Atmosph. Oceanic Phys. 13, 506–509 (in Russian).Google Scholar
  44. Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W.: 1967, ‘The Structure of Turbulent Boundary Layers’, J. Fluid Mech. 30, 741–773.Google Scholar
  45. Kraus, E. B.: 1972, Atmosphere Ocean Interaction, Clarendon Press, Oxford.Google Scholar
  46. Krishnamurti, R.: 1970, ‘On the Transition to Turbulent Convection. Part 2: The Transition to Time-dependent Flow’ J. Fluid Mech. 42, 309–320.Google Scholar
  47. Lee, J. A.: 1972, ‘Stability of the Thermal Boundary Layer and Sea Surface Temperature’, Unpublished Manuscript, Department of Oceanography, University of Washington, Seattle, Washington.Google Scholar
  48. Levich, V. G.: 1962, Physiochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  49. Liu, W. T.: 1978, ‘The Molecular Effects on Air-Sea Exchanges’, Ph.D. Thesis, Department of Atmospheric Sciences, University of Washington, Seattle, WA.Google Scholar
  50. Liu, W. T. and Businger, J. A.: 1975, ‘Temperature Profile in the Molecular Sublayer near the Interface of a Fluid in Turbulent Motion’, Geophys. Res. Lett. 2, 403–404.Google Scholar
  51. MacIntyre, J.: 1974, ‘The Top Millimeter of the Ocean’, Sci. Am. 230, 62–77.Google Scholar
  52. Malkus, J. S.: 1962, ‘Large Scale Interactions’, The Sea, Vol. I (ed. by M. N. Hill), Interscience Publishers, New York, 88–294.Google Scholar
  53. Manton, M. J.: 1972, ‘On the Attenuation of Sea Waves by Rain’, Geophys. Fluid Dyn. 5, 249–260.Google Scholar
  54. Marangoni, C.: 1872, ‘On the Principle of the Surface Viscosity of Liquids Established by Mr. J. Plateau’, NASA TT P-16, 818 (translated from Italian, Nuovo Cimento 2, V–VI, 239–273).Google Scholar
  55. Marangoni, C.: 1878, Nuovo Cimento (3) 3, 97. c(See previous reference.)Marangoni C.: 1872, ‘On the Principle of the Surface Viscosity of Liquids Established by Mr. J. Plateau’, NASA TT P-16, 818 (translated from Italian, Nuovo Cimento 2, V–VI, 239–273).Google Scholar
  56. Matisse, P.: 1974, ‘A Flow-indicating Fluid’, manuscript from Kalliroscope Corporation, 145 Main Street, Cambridge, Mass.Google Scholar
  57. McAlister, E. D.: 1964, ‘Infrared Optical Techniques Applied to Oceanography: I. Measurement of Total Heat Flow from the Sea Surface’, Appl. Optics 3, 609–612.Google Scholar
  58. McAlister, E. D. and McLeish, W.: 1969, ‘Heat Transfer in the Top Millimeter of the Ocean’, J. Geophys. Res. 74, 3408–4180.Google Scholar
  59. McAlister, E. D. and McLeish, W.: 1970, ‘A Radiometer System for Measurement of the Total Heat Flux from the Sea’, Appl. Optics 9, 2697–2705.Google Scholar
  60. McAlister, E. D., McLeish, W., and Corduan, A.: 1971, ‘Airborne Measurements of the Total Heat Flux from the Sea during BOMEX’, J. Geophys. Res. 76, 4172–4180.Google Scholar
  61. McLeish, W.: 1968, ‘On the Mechanism of Wind Slick Generation’, Deep Sea Res. 15, 461–469.Google Scholar
  62. McLeish, W. and Putland, G. E.: 1975, ‘Measurements of Wind-driven Flow Profiles in the Top Millimeter of Water’, J. Phys. Oceanog. 5, 516–518.Google Scholar
  63. Miller, A. W. Jr., Street, R. L., and Hsu, E. T.: 1975, ‘The Structure of the Aqueous Thermal Sublayer at an Air-Water Interface’, Technical Report No. 195, Department of Civil Engineering, Stanford University.Google Scholar
  64. Namias, J.: 1969, ‘Seasonal Interactions Between the North Pacific Ocean and the Atmosphere during the 1960s’, Mon. Weather Rev. 97, 173–192.Google Scholar
  65. Neumann, G.: 1940, ‘Die Ozeanographische Verhältnisse an der Meersoberflaeche im Gulfstromsektor Noerdlich und Nordwestlich der Azoren', Aus den Wiss. Erg. d. Intern. Golfstrom-Unternehmung, 1938’. Ann. Hydro. Mar. Met., 1–87.Google Scholar
  66. O'Brien, E.: 1967, ‘On the Flux of Heat Through Laminar Wavy Liquid Layers’, J. Fluid Mech. 28, 295–303.Google Scholar
  67. O'Brien, E. E. and Omholt, T.: 1969, ‘Heat Flux and Temperature Variation at a Wavy Water-Air Interface’, J. Geophys. Res. 74, 3384–3385.Google Scholar
  68. Omholt, Thore: 1973, ‘Estimation of the Oceanic Momentum Sublayer Thickness’, J. Phys. Oceanog. 3, 337–338.Google Scholar
  69. Osborne, M. F. M.: 1965, ‘The Effect of Convergent and Divergent Flow Patterns on Infrared and Optical Radiation from the Sea’, Dt. Hydrogr. Z. 18, 1–25.Google Scholar
  70. Ostapoff, F., Tarbeyev, Yu, and Worthem, S.: 1973, ‘Heat Flux and Precipitation Estimates from Oceanographic Observations’, Science 180, 960–962.Google Scholar
  71. Palmer, H. J. and Berg, J. C.: 1972, ‘Stability of Surfactant Solutions Heated from Below’, J. Fluid Mech. 51, 385–402.Google Scholar
  72. Paulson, C. A. and Parker, T. W.: 1972, ‘Cooling of a Water Surface by Evaporation, Radiation, and Heat Transfer’, J. Geophys. Res. 77, 491–495.Google Scholar
  73. Pearson, J. R. A.: 1958, ‘On Convection Cells Induced by Surface Tension’, J. Fluid Mech. 4, 489–500.Google Scholar
  74. Plesset, M. S., Whipple, C. G., and Winet, H.: 1975, ‘Rayleigh-Taylor Instability of Surface Layers as the Mechanism for Bioconvection in Cell Cultures’, manuscript from California Institute of Technology, Pasadena, California.Google Scholar
  75. Reynolds, O.: 1900, Papers on Mechanical and Physical Subjects, Vol. I, Cambridge University Press, Cambridge, Massachusetts.Google Scholar
  76. Rossby, H. T.: 1969, ‘A Study of Bénard Convection With and Without Rotation’, J. Fluid Mech. 36, 309–335.Google Scholar
  77. Saunders, P. M.: 1967a, ‘Aerial Measurement of Sea Surface Temperature in the Infrared’, J. Geophys. Res. 72, 4109–4117.Google Scholar
  78. Saunders, P. M.: 1967b, ‘The Temperature of the Ocean-Air Interface’, J. Atmos. Sci. 24, 269–273.Google Scholar
  79. Saunders, P. M.: 1970, ‘Corrections for Airborne Radiation Thermometry’, J. Geophys. Res. 75, 7596–7601.Google Scholar
  80. Saunders, P. M.: 1973, ‘The Skin Temperature of the Ocean-a Review’, Mémoires Société Royale des Sciences de Liege Series, 4, 93–98.Google Scholar
  81. Saunders, P. M. and Wilkins, C. H.: 1966, ‘Precise Airborne Radiation Thermometry’, Proc. 4th Symposium on Remote Sensing of Environment, Institute of Science and Technology, University of Michigan, Ann Arbor, Michigan, 815–826.Google Scholar
  82. Schlichting, H.: 1968, Boundary Layer Theory, McGraw-Hill Book Company, New York.Google Scholar
  83. Schott, G.: 1893, ‘Wissenschaftliche Ergebnisse einer Forschungsreise zur See Ausgefuehrt in den Jahren 1891 und 1892’, Petermanns Mitteilungen Ergaenzungsheft Nr. 109, Gotha 1893, 12–15 and 28–29.Google Scholar
  84. Spangenberg, W. W. and Rowland, W. R.: 1961, ‘Convective Circulation in Water Induced by Evaporative Cooling’, Phys. Fluids 4, 743–750.Google Scholar
  85. Stern, M. E.: 1960, ‘The Salt Fountain and Thermohaline Convection’, Tellus 12, 172–175.Google Scholar
  86. Sutcliffe, W. H., Baylor, E. R., and Menzel, D.: 1963, ‘Sea Surface Chemistry and Langmuir Circulation’, Deep Sea Research 10, 233–243.Google Scholar
  87. Tully, J. P.: 1965, Recommendation of the Panel on Sea Surface Temperature, In Oceanography from Space (ed. by G. C. Ewing), Woods Hole Oceanographic Institution, Ref. No. 65-10, p. 117–118.Google Scholar
  88. Twitchell, P. F.: 1976, ‘Water-Air Boundary Investigations’, Ph.D. Thesis, University of Wisconsin-Madison, Department of Meteorology, Madison, Wisconsin.Google Scholar
  89. Van de Watering, W. P. M. and Wiggert, D. C.: 1968, ‘Surface Temperature Fluctuations Due to Waves’, Trans. Amer. Geophys. Un. 49, 204–205.Google Scholar
  90. Van Dorn, W. G.: 1966, ‘Boundary Dissipation of Oscillatory Waves’, J. Fluid Mech. 24, 769–779.Google Scholar
  91. Von Karman, Th.: 1934, ‘Turbulence and Skin Friction’, J. Aeron. Sco. 1, 1–18.Google Scholar
  92. Webb, E. K.: 1974, ‘The Cool Skin of Open Water Surfaces’, paper read at International Union of Geodesy and Geophysics First Special Assembly at Melbourne, January 1974. Procesverbeaux No. 13, p. 163.Google Scholar
  93. Willis, G. E. and Deardorff, J. W.: 1967, ‘Development of Short Period Temperature Fluctuations in Thermal Convection’, Phys. Fluids 10, 931–937.Google Scholar
  94. Witting, J.: 1971, ‘Effects of Plane Progressive Irrotational Waves on Thermal Boundary Layers’, J. Fluid Mech. 50, 321–334.Google Scholar
  95. Witting, J.: 1972, ‘Temperature Fluctuations at an Air-Water Interface Caused by Surface Waves’, J. Geophys. Res. 77, 3265–3269.Google Scholar
  96. Woodcock, A. H.: 1941, ‘Surface Cooling and Streaming in Shallow Fresh and Salt Waters’, J. Mar. Res. 4, 153–161.Google Scholar
  97. Woodcock, A. H. and Stommel, H.: 1947, ‘Temperatures Observed Near the Surface of a Fresh Water Pond at Night’, J. Meteorol. 4, 102–103.Google Scholar
  98. Wu, J.: 1971, ‘An Estimation of Oceanic Thermal Sublayer Thickness’, J. Phys. Oceanog. 7, 284–286.Google Scholar

Copyright information

© D. Reidel Publishing Co 1980

Authors and Affiliations

  • Kristina B. Katsaros
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations