Cell Biology and Toxicology

, Volume 4, Issue 4, pp 487–493 | Cite as

Synaptonemal complex damage as a measure of genotoxicity at meiosis

  • James W. Allen
  • Patricia A. Poorman
  • Lorraine C. Backer
  • James B. Gibson
  • Barbara Westbrook-Collins
  • Montrose J. Moses

Synaptonemal complex aberrations can provide a sensitive measure of chemical-specific alterations to meiotic chromosomes. Mitomycin C, cyclophosphamide, amsacrine, ellipticine, colchicine, vinblastine sulfate, and cis platin exposures in mice have been shown to cause various patterns of synaptonemal complex structural damage and synaptic irregularity. These effects are suggestive of abnormal homologue pairinglsynapsis/recombination effects which, theoretically, could be implicated in mechanisms leading to aneuploidy and other potentially heritable chromosomal disorders.

Key words

genotoxicity meiosis synaptonemal complex 

















mitomycin C


synaptonemal complex


vinblastine sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALLEN, J.W., DEWEESE, G.K., GIBSON, J.B., POORMAN, P.A. and MOSES, M.J. (1987). Synaptonemal complex damage as a measure of chemical mutagen effects on mammalian germ cells. Mutat. Res. 190:19–24.Google Scholar
  2. ALLEN, J.W., GIBSON, J.B., POORMAN, P.A., BACKER, L.C. and MOSES, M.J. (1988). Synaptonemal complex damage induced by clastogenic and anti-mitotic chemicals: Implications for nondisjunction and aneuploidy. Mutat. Res., in press.Google Scholar
  3. BACKER, L.C., GIBSON, J.B., MOSES, M.J. and ALLEN, J.W. (1988). Synaptonemal complex damage in relation to meiotic chromosome aberrations after exposure of male mice to cyclophosphamide. Mutat. Res., in press.Google Scholar
  4. CAWOOD, A.H. and BRECKON, G. (1983). Synaptonemal complexes as indicators of induced stuctural change in chromosomes after irradiation of spermatogonia. Mutat. Res. 122:149–154.Google Scholar
  5. COUNCE, S.J. and MEYER, G. F. (1973). Differentiation of the synaptonemal complex and the kinetochore in Locusta spermatocytes studied by whole mount microscopy. Chromosoma 44:231–253.Google Scholar
  6. DRESSER, M.E. and Moses, M.J. (1979). Silver staining of synaptonemal complexes in surface spreads for light and electron microscopy. Exp. Cell Res. 121:416–419.Google Scholar
  7. DRESSER, M.E. and MOSES, M.J. (1980). Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). IV. Light and electron microscopy of synapsis and nucleolar development by silver staining. Chromosoma (Berl.) 76:1–22.Google Scholar
  8. GIBSON, J.B., DEWEESE, G.K., POORMAN, P.A., ALLEN, J.W. and MOSES, M.J. (1986). Mutagen and spindle poison effects on the synaptonemal complex in rodent spermatocytes. J. Cell Biol. 103(5 pt 2):80A.Google Scholar
  9. KALIKINSKAYA, E.I., KOLOMIETS, O.L., SHEVCHENKO, V.A. and BOGDANOV, Y.F. (1986). Chromosome aberrations in F1 from irradiated male mice studied by their synaptonemal complexes. Mutat. Res. 174: 59–65.Google Scholar
  10. MOSES, M.J. (1977). Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). I. Morphology of the autosomal complement in spread preparations. Chromosoma 60:99–125.Google Scholar
  11. MOSES, M.J. (1981). Meiosis, synaptonemal complex and cytogenetic analysis. In: G. Jagiello and H. Vogel (Eds.), Bioregulators of Reproduction, Academic Press, New York, pp. 187–206.Google Scholar
  12. MOSES, M.J., DRESSER, M.E. and POORMAN, P.A. (1984). Composition and role of the synaptonemal complex. In: C.W. Evans and H. G. Dickenson (Eds.), Controlling Events in Meiosis, Vol. 38, The Company of Biologists, Ltd., Cambridge, UK, pp. 245–270.Google Scholar
  13. MOSES, M.J., POORMAN, P.A., DRESSER, M.E., DEWEESE, G.K. and GIBSON, J.B. (1985). The synaptonemal complex in meiosis: significance of induced perturbations. In: V.L. Dellarco, P.E. Voytek, and A. Hollaender (Eds.), Aneuploidy, Etiology and Mechanisms, Plenum Press, New York, pp. 337–350.Google Scholar
  14. NATIONAL RESEARCH COUNCIL, COMMITTEE ON CHEMICAL ENVIRONMENTAL MUTAGENS. (1982). Identifying and Estimating the Genetic Impact of Chemical Mutagens, pp. 1–25. Natl. Acad. Press, Washington, DC.Google Scholar
  15. POORMAN, P.A., MOSES, M.J., DAVISSON, M.T. and RODERICK, T.H. (1981a). Synaptonemal complex analysis of mouse chromosomal rearrangements. III. Cytogenetic observations on two paracentric inversions. Chromosoma 83:419–429.Google Scholar
  16. POORMAN, P.A., MOSES, M.J., RUSSELL, L.B. and CACHEIRO, N.L. (1981b). Synaptonemal complex analysis of mouse chromosomal rearrangements. I. Cytogenetic observations on a tandem duplication. Chromosoma 81:507–518.Google Scholar
  17. U.S. ENVIRONMENTAL PROTECTION AGENCY. (1986). Guidelines for mutagenicity risk assessment. Federal Register 51:34006–34012.Google Scholar
  18. WARREN, A.C., CHAKRAVARTI, A., WONG, C., SLAUGENHAUPT, S.A., HALLORAN, S.L., WATKINS, P.C., METAXOTOU, C. and ANTONARAKIS, S.E. (1987). Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down Syndrome. Science 237:652–654.Google Scholar

Copyright information

© Princeton Scientific Publishing Co., Inc 1988

Authors and Affiliations

  • James W. Allen
    • 1
  • Patricia A. Poorman
    • 2
  • Lorraine C. Backer
    • 3
  • James B. Gibson
    • 4
  • Barbara Westbrook-Collins
    • 1
  • Montrose J. Moses
    • 4
  1. 1.Genetic Toxicology DivisionHealth Effects Research Laboratory U.S. Environmental Protection AgencyResearch Triangle Park
  2. 2.Genetic Toxicology LaboratoryBurroughs Wellcome Co.Research Triangle Park
  3. 3.Environmental Health Research and TestingResearch Triangle Park
  4. 4.Department of AnatomyDuke University Medical CenterDurham

Personalised recommendations