Journal of Low Temperature Physics

, Volume 42, Issue 5–6, pp 557–584 | Cite as

Properties of the distorted flux-line lattice near a planar surface

  • E. H. Brandt
Article

The magnetic field, current density, and energy of an arbitrary array of curved or straight flux lines in a type II superconductor with a planar surface are calculated from the London theory. The general expressions and their expansion with respect to displacements from the equilibrium flux-line positions are given. The elastic energy of the distorted flux-line lattice near a planar surface is presented and discussed. The equilibrium configuration becomes unstable to the growth of helical perturbations if a current exceeding a critical value is applied parallel to the external magnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972).Google Scholar
  2. 2.
    E. J. Kramer, J. Appl. Phys. 44, 1360 (1973).Google Scholar
  3. 3.
    A. M. Campbell, Phil. Mag. 37, 149 (1978).Google Scholar
  4. 4.
    A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).Google Scholar
  5. 5.
    M. A. R. LeBlanc, Phys. Rev. 143, 220 (1966).Google Scholar
  6. 6.
    T. Ezaki and F. Irie, J. Phys. Soc. Japan 40, 382 (1976).Google Scholar
  7. 7.
    D. G. Walmsley and W. E. Timms, J. Phys. F 7, 2373 (1977).Google Scholar
  8. 8.
    J. R. Cave and J. E. Evetts, Phil. Mag. B 37, 111 (1978).Google Scholar
  9. 9.
    J. R. Clem, J. Low Temp. Phys. 38, 353 (1980).Google Scholar
  10. 10.
    E. H. Brandt, J. Low Temp. Phys. 39, 41 (1980).Google Scholar
  11. 11.
    J. R. Clem, Phys. Rev. Lett. 38, 1425 (1977).Google Scholar
  12. 12.
    E. H. Brandt, Phys. Lett. 79A, 207 (1980).Google Scholar
  13. 13.
    A. S. Brito, G. Zerweck, and O. F. de Lima, J. Low Temp. Phys. 36, 33 (1979).Google Scholar
  14. 14.
    E. H. Brandt, J. Low Temp. Phys. 26, 709, 735; 28, 263, 291 (1977).Google Scholar
  15. 15.
    R. E. Ballay, Ph.D. Thesis, Iowa State University, Ames, Iowa (1977), unpublished.Google Scholar
  16. 16.
    E. H. Brandt, Phys. Stat. Sol. 51, 345 (1972).Google Scholar
  17. 17.
    L. Kramer, Phys. Rev. B 3, 3821 (1971).Google Scholar
  18. 18.
    E. H. Brandt, J. R. Clem, and D. G. Walmsley, J. Low Temp. Phys. 37, 43 (1979).Google Scholar
  19. 19.
    F. London, Superfluids, Vol. 1 (New York, 1950).Google Scholar
  20. 20.
    P. G. De Gennes, Superconductivity of Metals and Alloys (Benjamin; 1966).Google Scholar
  21. 21.
    B. B. Goodman and J. Matricon, J. Phys. (Paris) 27, C-39 (1966), Eq. (8.12).Google Scholar
  22. 22.
    F. F. Ternovskij, Sov. Phys.—JETP 33, 969 (1971), Eq. (2.8).Google Scholar
  23. 23.
    F. F. Ternovskij and L. N. Shekhata, Sov. Phys.—JETP 35, 1202 (1972).Google Scholar
  24. 24.
    V. V. Shmidt and G. S. Mkrtchyan, Sov. Phys.—Usp. 17, 170 (1974).Google Scholar
  25. 25.
    E. H. Brandt, Phys. Stat. Sol. (b) 77, 551 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • E. H. Brandt
    • 1
  1. 1.Max-Planck-Institut für Metallforschung, Institut für PhysikStuttgartGermany

Personalised recommendations