Journal of Low Temperature Physics

, Volume 23, Issue 1–2, pp 27–41 | Cite as

Frequency analysis of phonons backscattered from interfaces between solids and helium

  • W. Dietsche
  • H. Kinder

Monochromatic phonons were generated using superconducting tunneling junctions. These phonons were scattered at a solid surface. The backscattered phonons were detected by two different methods. A tunneling junction was used as a detector with a frequency threshold corresponding to its energy gap and a bolometer was used as a detector which is sensitive to all phonons regardless of frequency. When the scattering surface was exposed to helium gas or bulk liquid the two detector signals changed differently. This qualitative frequency analysis yields evidence for frequency conversion of phonons in the two atomic layers of helium at the surface.


Helium Magnetic Material Solid Surface Frequency Analysis Atomic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 22, 687 (1952).Google Scholar
  2. 2.
    R. E. Peterson and A. C. Anderson, Phys. Lett. 40A, 317 (1972).Google Scholar
  3. 3.
    H. Haug and K. Weiss, Phys. Lett. 40A, 19 (1972).Google Scholar
  4. 4.
    C. H. Anderson and E. S. Sabisky, in Physical Acoustics, W. P. Mason and R. N. Thurston, eds. (Academic, New York, 1971), Vol. 8, p. 1.Google Scholar
  5. 5.
    G. L. Pollack, Rev. Mod. Phys. 41, 48 (1969); N. S. Snyder, Cryogenics 10, 89 (1970); L. J. Challis, J. Phys. C 7, 481 (1974).Google Scholar
  6. 6.
    R. A. Sherlock, N. G. Mills, and A. F. G. Wyatt, J. Phys. C 8, 300 (1975).Google Scholar
  7. 7.
    A. C. Anderson and W. L. Johnson, J. Low Temp. Phys. 7, 1 (1972).Google Scholar
  8. 8.
    A. R. Long, J. Low Temp. Phys. 17, 7 (1974).Google Scholar
  9. 9.
    H. Kinder, Phys. Rev. Lett. 28, 1564 (1972); Z. Phys. 262, 295 (1973).Google Scholar
  10. 10.
    H. J. Maris and W. E. Massey, Phys. Rev. Lett. 25, 220(1970); J. Jäckle and K. W. Kehr, Phys. Rev. Lett. 27, 654 (1971).Google Scholar
  11. 11.
    H. Kinder and W. Dietsche, Phys. Rev. Lett. 33, 578 (1974).Google Scholar
  12. 12.
    W. Eisenmenger and A. H. Dayem, Phys. Rev. Lett. 18, 125 (1967).Google Scholar
  13. 13.
    W. Buckel and R. Hilsch, Z. Phys. 149, 1 (1957).Google Scholar
  14. 14.
    T. R. Roberts and S. G. Sydoriak, Phys. Rev. 102, 304 (1956).Google Scholar
  15. 15.
    B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 23, 416 (1969).Google Scholar
  16. 16.
    E. S. Sabisky and C. H. Anderson, Phys. Rev. Lett. 30, 1122 (1973).Google Scholar
  17. 17.
    C.-J. Guo and H. J. Maris, Phys. Rev. A. 10, 960 (1974).Google Scholar
  18. 18.
    A. R. Long, R. A. Sherlock, and A. F. G. Wyatt, J. Low Temp. Phys. 15, 523 (1974).Google Scholar
  19. 19.
    H. Kinder, K. Laszmann, and W. Eisenmenger, Phys. Lett. 31A, 475 (1970).Google Scholar
  20. 20.
    H. Haug, Phys. Lett. 45A, 170 (1973).Google Scholar
  21. 21.
    T. J. B. Swanenburg and J. Wolter, Phys. Rev. Lett. 33, 882 (1974).Google Scholar
  22. 22.
    J. S. Buechner and H. J. Maris, Phys. Rev. Lett. 34, 316 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • W. Dietsche
    • 1
  • H. Kinder
    • 1
  1. 1.Institut für FestkörperforschungKernforschungsanlage JülichWest Germany

Personalised recommendations