Journal of Low Temperature Physics

, Volume 34, Issue 3–4, pp 409–428 | Cite as

Pinning in type II superconductors

  • A. I. Larkin
  • Yu. N. Ovchinnikov

Large and randomly arranged pinning centers cause a strong deformation of a flux line lattice, so that each pinning center acts on the lattice with a maximum force. The average force for such single-particle pinning can be inferred from a simple summing procedure and has a domelike dependence on magnetic field. Pinning centers of average force, such as clusters of dislocations, strongly deform the flux line lattice only in weak fields and in fields close to the critical field, where there is a peak in the dependence of the critical current on magnetic field. In the range of intermediate fields there is a weak collective pinning. A large concentration of weak centers leads to collective pinning in all fields. In this case, near the critical field a critical current peak should be observed. To explain this peak and to define the boundaries between the regions of collective and single-particle pinning the possible break-off of the flux line lattice from the lines of magnetic force should be taken into consideration, which leads to extra softening of the lattice.


Magnetic Field Magnetic Material Average Force Magnetic Force Line Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957).Google Scholar
  2. 2.
    P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).Google Scholar
  3. 3.
    M. A. R. Le Blanc and W. A. Little, in Proc. 7th Inter. Conf. on Low Temp. Phys. (University of Toronto Press, 1961), p. 362; T. G. Berlincourt, R. R. Hake, and D. H. Leslie, Phys. Rev. Lett. 6, 671 (1971).Google Scholar
  4. 4.
    M. Steingart, A. G. Purz, and E. J. Kramer, J. Appl. Phys. 44, 5580 (1973).Google Scholar
  5. 5.
    S. Borka, I. I. Goncharov, D. Frichevski, and I. S. Khukhareva, Fiz. Nizkikh Temp. 3, 716 (1977).Google Scholar
  6. 6.
    L. Ya. Vinnikov, V. I. Grigor'ev and O. V. Zharikov, Zh. Eksp. Teor. Fiz. 71, 252 (1976).Google Scholar
  7. 7.
    A. I. Larkin, Zh. Eksp. Teor. Fiz. 58, 1466 (1970).Google Scholar
  8. 8.
    A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 65, 1704 (1973).Google Scholar
  9. 9.
    E. H. Brandt, J. Low Temp. Phys. 26, 709 (1977).Google Scholar
  10. 10.
    A. I. Larkin and Yu. N. Ovchinnikov, Pisma Zh. Eksp. Teor. Fiz. 27, 301 (1978).Google Scholar
  11. 11.
    R. Labusch, Cryst. Lattice Defects 1, 1 (1969).Google Scholar
  12. 12.
    G. Eilenberger, Z. Phys. 214, 195 (1968).Google Scholar
  13. 13.
    A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 2262 (1968).Google Scholar
  14. 14.
    Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 66, 1100 (1974).Google Scholar
  15. 15.
    R. Schmucher and E. H. Brandt, Phys. Stat. Sol. (b) 79, 479 (1977).Google Scholar
  16. 16.
    A. M. Campbell and J. E. Evetts, Critical Currents in Superconductors (London, 1972).Google Scholar
  17. 17.
    K. E. Osborne and E. J. Kramer, Phil. Mag. 29, 685 (1974).Google Scholar
  18. 18.
    A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 61, 1221 (1971).Google Scholar
  19. 19.
    S. Borka, I. N. Goncharov, D. Frichevski, and I. S. Khukhareva, Fiz. Nizkikh Temp. 3, 598 (1977).Google Scholar
  20. 20.
    E. J. Kramer, MSC Report-2857; J. Appl. Phys. 49, 742 (1978).Google Scholar
  21. 21.
    A. A. Moshenskii, N. Ya. Fogel', A. S. Sidorenko, A. M. Gluchov, I. M. Dmitrienko, L. P. Tishchenko, and Ya. M. Fogel', Fiz. Nizkikh Temp. 2, 685 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. I. Larkin
    • 1
  • Yu. N. Ovchinnikov
    • 1
  1. 1.L. D. Landau Institute for Theoretical Physics, Academy of Sciences of the USSRMoscow

Personalised recommendations