Journal of Low Temperature Physics

, Volume 32, Issue 1–2, pp 101–129 | Cite as

Radiation-induced flux pinning in type II superconductors

  • Herbert C. Freyhardt
Article

In monocyrstalline foils of oxygen-doped niobium and niobium—zirconium alloys, statistically distributed or regularly arranged voids were created during irradiation with high-energy 58Ni+ ions (3.5MeV, up to 8.1 × 1016 ions/cm2) at temperatures between 750 and 900°C. The voids exhibit a strong interaction with flux lines, which was determined from measurements of the (anisotropic) critical currents as a function of transverse magnetic field, temperature, and defect geometry. The experimentally determined volume pinning forces obey scaling laws and lead to elementary interaction forces between voids and fluxoids that are larger than theoretical values calculated for various possible mechanisms of interaction. The validity of the statistical summation of elementary forces is discussed.

Keywords

Magnetic Field Zirconium Niobium Magnetic Material Strong Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. Brown, H. C. Freyhardt, and T. H.Blewitt, eds., Proc. of the International Discussion Meeting on Radiation Effects on Superconductivity (J. Nucl. Materials and North-Holland, Amsterdam 1978).Google Scholar
  2. 2.
    H. Berndt and F. Sernetz, Phys. Lett. 33A, 427 (1970).Google Scholar
  3. 3.
    H. T. Coffey, E. L. Keller, A. Patterson, and S. H. Antler, Phys. Rev. 155, 355 (1967).Google Scholar
  4. 4.
    A. R. Sweedler and D. E. Cox, Phys. Rev. B 12, 147 (1975).Google Scholar
  5. 5.
    K. Wohlleben, J. Low Temp. Phys. 13, 269 (1973).Google Scholar
  6. 6.
    B. S. Brown, H. C. Freyhardt, and T. H. Blewitt, J. Appl. Phys. 45, 2724 (1974).Google Scholar
  7. 7.
    H. Berndt, N. Kartascheff, and H. Wenzl, Z. Angew. Phys. 24, 305 (1968).Google Scholar
  8. 8.
    H. Ullmaier, C. Papastaikoudis, and W. Schilling, Phys. Stat. Sol. 38, 189 (1970); 41, 671 (1970).Google Scholar
  9. 9.
    A. R. Sweedler, D. E. Cox, and D. G. Schweitzer, IEEE Trans. Magn. MAG-11, 163 (1975).Google Scholar
  10. 10.
    A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972).Google Scholar
  11. 11.
    H. Kronmüller, in Proc. of the International Discussion Meeting on Flux Pinning in Superconductors, P. Haasen and H. C. Freyhardt, eds. (Akademie der Wissenschaften, Göttingen, 1974), p. 1.Google Scholar
  12. 12.
    R. Labusch, Crystal Lattice Defects 1, 1 (1969).Google Scholar
  13. 13.
    R. Labusch, J. Nucl. Materials, in press.Google Scholar
  14. 14.
    R. Labusch, Phys. Stat. Sol. 19, 715 (1967); 32, 439 (1969).Google Scholar
  15. 15.
    E. H. Brandt, J. Low Temp. Phys. 26, 709, 735 (1977); Phys. Stat. Sol. (b) 77, 551 (1976).Google Scholar
  16. 16.
    H. C. Freyhardt, Phil. Mag. 23, 345; 23, 369 (1971); in Proc. of the International Discussion Meeting on Flux Pinning in Superconductors, P. Haasen and H. C. Freyhardt, eds. (Akademie der Wissenschaften, Göttingen, 1974), p. 98.Google Scholar
  17. 17.
    D. C. Agrawal, B. A. Loomis, and E. J. Kramer, Phil. Mag. 33, 343 (1976).Google Scholar
  18. 18.
    G. Antesberger and H. Ullmaier, Phys. Rev. Lett. 35, 59 (1975).Google Scholar
  19. 19.
    L. Schultz, Phil. Mag., in press.Google Scholar
  20. 20.
    D. Dew-Hughes, Phil. Mag. 30, 293 (1974).Google Scholar
  21. 21.
    H. C. Freyhardt and V. Graeger, J. Nucl. Materials, in press.Google Scholar
  22. 22.
    E. J. Kramer, J. Nucl. Materials, in press.Google Scholar
  23. 23.
    J. Petermann, Z. Metallk. 61, 724 (1970).Google Scholar
  24. 24.
    L. Schultz and H. C. Freyhardt, Phys. Stat. Sol. 13a, 145 (1972); in Proc. of the International Discussion Meeting on Flux Pinning in Superconductors, P. Haasen and H. C. Freyhardt, eds. (Akademie der Wissenschaften, Göttingen, 1974), p. 168; L. Schultz, Acta Met. 25, in press.Google Scholar
  25. 25.
    B. Pippard, Phil. Mag. 19, 220 (1969).Google Scholar
  26. 26.
    E. J. Kramer, J. Appl. Phys. 44, 1360 (1973).Google Scholar
  27. 27.
    B. S. Brown, H. C. Freyhardt, and T. H. Blewitt, unpublished.Google Scholar
  28. 28.
    B. S. Brown, in Proc. of the International Discussion Meeting on Flux Pinning in Superconductors, P. Haasen and H. C. Freyhardt, eds. (Akademie der Wissenschaften, Göttingen, 1974), p. 200.Google Scholar
  29. 29.
    S. T. Sekula, J. Appl. Phys. 42, 16 (1971).Google Scholar
  30. 30.
    P. H. Kes, C. A. M. van der Klein, and D. DeKlerk, in Proc. of the International Discussion Meeting on Flux Pinning in Superconductors, P. Haasen and H. C. Freyhardt, eds. (Akademie der Wissenschaften, Göttingen, 1974), pp. 188, 199.Google Scholar
  31. 31.
    C. Cawthorne and E. J. Fulton, Nature 216, 575 (1966).Google Scholar
  32. 32.
    D. I. R. Norris, Rad. Eff. 14, 1 (1972).Google Scholar
  33. 33.
    D. I. R. Norris, Rad. Eff. 15, 1 (1972).Google Scholar
  34. 34.
    R. Bullough and R. S. Nelson, AERE report 7353 (Harwell) (1973).Google Scholar
  35. 35.
    C. C. Koch, H. C. Freyhardt, and J. O. Scarborough, in Proc. Appl. Superconductivity Conference, Stanford, 1976.Google Scholar
  36. 36.
    B. A. Loomis and S. B. Gerber, Acta Met. 21, 165 (1973).Google Scholar
  37. 37.
    A. Taylor, Heavy-ion irradiation procedure using the 4-MV Dynamitron, Argonne National Laboratory, internal report (1975).Google Scholar
  38. 38.
    D. K. Brice, RASE 3 and DAMG 2: Routines for Ion Implantation Calculations, Sandia Laboratories, Rep. SLA-73-0416 (April 1973).Google Scholar
  39. 39.
    B. A. Loomis, private communication (dy1975).Google Scholar
  40. 40.
    B. A. Loomis, A. Taylor, and S. B. Gerber, J. Nucl. Materials 56, 25 (1975).Google Scholar
  41. 41.
    B. A. Loomis, A. Taylor, T. E. Klippert, and S. B. Gerber, in Proc. 1973 Int. Conf. on Defects and Defect Clusters in B.C.C. Metals and their Alloys, R. J. Arsenault, ed., Nucl. Metallurgy 18, 332 (1973).Google Scholar
  42. 42.
    F. A. Shunk, Constitution of Binary Alloys, 2nd Suppl. (McGraw-Hill, New York, 1969).Google Scholar
  43. 43.
    G. L. Kulcinski, in Application of Ion Beams to Metals, S. T. Picraux, E. P. EerNisse, and F. L. Vook, eds. (Plenum, New York, 1974), p. 613.Google Scholar
  44. 44.
    H. C. Freyhardt, A. Taylor, and B. A. Loomis, in Application of Ion Beams to Metals, S. T. Picraux, E. P. EerNisse, and F. L. Vook, ds. (Plenum, New York, 1974), p. 47.Google Scholar
  45. 45.
    H. C. Freyhardt, Habilitation Thesis, University of Göttingen (dy1976).Google Scholar
  46. 46.
    H. C. Freyhardt, submitted to Phys. Stat. Sol. Google Scholar
  47. 47.
    R. Huebener, R. T. Kampwirth, and V. A. Rowe, Cryogenics 12, 100 (1972).Google Scholar
  48. 48.
    R. D. Parks, ed. Superconductivity (Dekker, New York, 1969).Google Scholar
  49. 49.
    L. Kramer, W. Pesch, and R. J. Watts-Tobin, J. Low Temp. Phys. 14, 29 (1974).Google Scholar
  50. 50.
    . C. Koch, J. O. Scarborough, and D. N. Kroeger, Phys. Rev. 9, 888 (1974).Google Scholar
  51. 51.
    W. DeSorbo, Phys. Rev. A 134, 119 (1964).Google Scholar
  52. 52.
    P. H. Kes, C. A. M. van der Klein, and D. DeKlerk, J. Low Temp. Phys. 10, 759 (1973).Google Scholar
  53. 53.
    H. C. Freyhardt, submitted to Phil. Mag. Google Scholar
  54. 54.
    W. A. Fietz and W. W. Webb, Phys. Rev. 178, 657 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Herbert C. Freyhardt
    • 1
  1. 1.Institut für Metallphysik and Sonderforschungsbereich, University of GöttingenGermany

Personalised recommendations