• Julian Besag
Bayesian Image Analysis (with Discussion)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Additional References

  1. Amit, Y., Grenander, U. and Piccioni, M. (1991). Structured image restoration through deformable templates, J. Amer. Statist. Assoc. (to appear).Google Scholar
  2. Besag, J. E. (1977). Errors-in-variables estimation for Gaussian lattice schemes, J. Roy. Statist. Soc. Ser. B, 39, 73–78.Google Scholar
  3. Besag, J. E. (1978). Some methods of statistical analysis for spatial data (with discussion), Bull. Internat. Statist. Inst., 47, Book 2, 77–92.Google Scholar
  4. Besag, J. E. (1981). On a system of two-dimensional recurrence equations, J. Roy. Statist. Soc. Ser. B, 43, 302–309.Google Scholar
  5. Besag, J. E. and Clifford, P. (1989). Generalized Monte Carlo significance tests, Biometrika, 76, 633–642.Google Scholar
  6. Besag, J. E. and Clifford, P. (1991). Sequential Monte Carlo p-values, Biometrika, 78 (to appear).Google Scholar
  7. Comets, F. (1989). On the consistency of a class of estimators for exponential families of Markov random fields on the lattice, Universite de Paris-X (preprint).Google Scholar
  8. Fredkin, D. R. and Rice, J. A. (1991). Bayesian restoration of single channel patch clamp recordings, Biometrics (to appear).Google Scholar
  9. Geman, D. (1991). Random fields and inverse problems in imaging, Lecture Notes in Math., Springer, Berlin (to appear).Google Scholar
  10. Geman, D. and Reynolds, G. (1991). Constrained restoration and the recovery of discontinuities, Tech. Report, Department of Mathematics and Statistics, University of Massachusetts at Amherst.Google Scholar
  11. Geyer, C. J. and Thompson, E. A. (1991). Maximum likelihood in exponential families (with discussion), J. Roy. Statist. Soc. Ser. B, 53 (to appear).Google Scholar
  12. Gidas, B. (1987). Consistency of maximum likelihood and pseudolikelihood estimators for Gibbs distributions, Proceedings of the Workshop on Stochastic Differential Systems with Applications, Springer.Google Scholar
  13. Green, P. J. (1986). Discussion: On the statistical analysis of dirty pictures, by Besag, J. E., J. Roy. Statist. Soc. Ser. B, 48, 259–302.Google Scholar
  14. Grenander, U. (1989). Advances in pattern theory, Ann. Statist., 17, 1–30.Google Scholar
  15. Guyon, X. (1987). Estimation d'un champ par pseudo-vraisemblance conditionelle: étude asymptotique et application au cas markovien, Actes de la 6éme Rencontre Franco-Belge de Statisticiens, Edition des Facultés Universitaires de Saint-Louis, Bruxelles.Google Scholar
  16. Jensen, J. L. and Møller, J. (1989). Pseudolikelihood for exponential family models of spatial processes, Research Report, No. 203, Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus, Denmark.Google Scholar
  17. Lippman, A. (1991). Markov models for speech recognition, Spatial Statistics and Image Processing: a Cross-Disciplinary Report (eds. J. J. Simpson and J. E. Besag), National Academy of Sciences Press, Washington, D. C.Google Scholar
  18. Mollié, A. and Richardson, S. (1991). Empirical Bayes estimates of cancer mortality rates using spatial models, Statist. Med., 10, 95–112.Google Scholar
  19. Qian, W. and Titterington, D. M. (1991). Stochastic relaxations and E-M algorithm for Markov random fields, J. Statist. Comput. Simulation (to appear).Google Scholar
  20. Ripley, B. D. (1981). Spatial Statistics, Wiley, New York.Google Scholar
  21. Sheehan, N. A. (1990). Image processing procedures applied to the estimation of genotypes on pedigrees, Tech. Report, No. 176, Department of Statistics, University of Washington.Google Scholar
  22. Swendsen, R. H. and Wang, J-S. (1987). Non-universal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58, 86–88.Google Scholar
  23. Thomas, A. (1991). Genotypic inference with the Gibbs sampler, Proceedings for the Workshop on Analytic Methods for Population Viability and Analyses, Front Royal, Virginia, October 1989 (to appear).Google Scholar

Copyright information

© Kluwer Academic Publisher 1990

Authors and Affiliations

  • Julian Besag
    • 1
  1. 1.Department of Statistics GN-22University of WashingtonSeattleU.S.A.

Personalised recommendations