Journal of Low Temperature Physics

, Volume 23, Issue 5–6, pp 645–661 | Cite as

A method for calculating the microwave surface impedance of superconducting films

  • J. R. Hook


A method is described for calculating the surface impedance of thin superconducting films using the theory of Mattis and Bardeen of the surface impedance of superconductors. An approximate extension of the theory to the case where the superconducting order parameter inside the film varies slowly in space is presented. Calculations using the theory are compared with experimental measurements of the surface impedance at 3 GHz of thin tin films on bulk lead substrates. Agreement between theory and experiment is good.


Microwave Magnetic Material Experimental Measurement Material Processing Surface Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Pippard, Proc. Roy. Soc. A216, 547 (1953).Google Scholar
  2. 2.
    M. A. Biondi and M. P. Garfunkel, Phys. Rev. Lett. 2, 143 (1959).Google Scholar
  3. 3.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).Google Scholar
  4. 4.
    D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).Google Scholar
  5. 5.
    P. B. Miller, Phys. Rev. 118, 928 (1960).Google Scholar
  6. 6.
    D. M. Ginzberg and L. C. Hebel, in Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Vol. 1, Chap. 4.Google Scholar
  7. 7.
    C. Varmazis, J. R. Hook, D. J. Sandiford, and M. Strongin, Phys. Rev. B 11, 3354 (1975).Google Scholar
  8. 8.
    J. R. Hook, in Low Temperature Physics-LT 13, W. J. O'Sullivan, K. D. Timmerhaus, and E. F. Hammel, eds. (Plenum, New York, 1974), Vol. 3, p. 337.Google Scholar
  9. 9.
    J. R. Hook and J. A. Battilana. in Low Temperature Physics- LT 14 (Plenum, New York. 1975).Google Scholar
  10. 10.
    P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).Google Scholar
  11. 11.
    L. P. Gor'kov, Sov. Phys.—JETP 9, 1364 (1959); 10, 998, (1960).Google Scholar
  12. 12.
    R. O. Za\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i} \)tsev, Sov. Phys.—JETP 23, 702 (1966).Google Scholar
  13. 13.
    J. R. Hook and J. R. Waldram, Proc. Roy. Soc. A334, 171 (1973).Google Scholar
  14. 14.
    M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965), Chap. 5.Google Scholar
  15. 15.
    A. R. Barnett, D. H. Feng, J. W. Steed, and L. J. B. Goldfarb Computer Phys. Commun. 8, 377 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • J. R. Hook
    • 1
  1. 1.Department of PhysicsUniversity of ManchesterManchesterEngland

Personalised recommendations