Advertisement

Earth, Moon, and Planets

, Volume 56, Issue 3, pp 233–242 | Cite as

The wave nature and dynamical quantization of the solar system

  • V. N. Damgov
  • D. B. Douboshinsky
Article

Abstract

A heuristic model is proposed of the mean distances between the solar-system planets, their satellites and the primaries. The model is based on: (i) the concept of the solar system structure wave nature; (ii) the micro-mega analogy (MM analogy) of the micro- and megasystem structures, and (iii) the oscillator amplitude “quantization” phenomenon, occuring under wave action, discovered on the basis of the classical oscillations theory (Damgov et al., 1990, 1991).

From the equation, describing the charge rotation under the action of an electromagnetic wave, an expression is obtained for the discrete set of probable stationary motion amplitudes. The discrete amplitude values — the “quantization” phenomenon — are defined by the argument values at the extreme points of the N-order Bessel functions. Using this expression, the mean related distances are computed from the solar system planets and the Saturn, Uranian and Jovian satellites to the primaries.

Keywords

Electromagnetic Wave Solar System Bessel Function Extreme Point Wave Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C. W.: 1973, Astrophysical Quantities, (3rd ed.) University of London, The Athlone Press.Google Scholar
  2. Beletsky, V. V.: 1977, Articles on Space Body Motion, Nauka i Iskustvo, Sofia.Google Scholar
  3. Blehmann, I. I.: 1981, Synchronization in Nature and Technique, Nauka, Moscow.Google Scholar
  4. Bogoljubov, N. N. and Mitropolsky, Y. A.:1974, Asymptotic Methods in the Nonlinear Theory, Nauka, Moscow.Google Scholar
  5. Davies, P.: 1985, Superforce, Simon and Schuster, Inc., New York.Google Scholar
  6. Damgov, V. N.: 1990, Comptes Rendus de l'Académie Bulgare des Sciences 43(10), 57–40.Google Scholar
  7. Damgov, V. N. et al.: 1990, Comptes Rendus de l' Académie Bulgare des Sciences 43(12), 48–53.Google Scholar
  8. Damgov, V. N. et al.: 1991, Comptes Rendus de l'Académie Bulgare des Science 44(1), 17–21.Google Scholar
  9. Damgov, V. N.: 1991, Comptes Rendus de l'Académie Bulgare des Sciences 44(9) (in press).Google Scholar
  10. Damgov, V. N. and Grinberg, G. S.: 1991, Comptes Rendus de l'Académie Bulgare des Sciences 44(9), (in press).Google Scholar
  11. Gorkavy, N. N. and Fridmann, A. A.: 1990, UFN 160, 169–237.Google Scholar
  12. Greenberger, D. W.: 1983, Foundation of Physics 13, 903–951.Google Scholar
  13. Houpis, H. L. F. and Mendis, D. A.: 1983, The Moon and the Planets 29, 39–46.Google Scholar
  14. Lalaja, V. et al.: 1989, Earth, Moon, and Planets, 44, 105–119.Google Scholar
  15. Louise, R.: 1982a, The Moon and the Planets 26, 93–96.Google Scholar
  16. Louise, R.: 1982b, The Moon and the Planets 26, 389–398.Google Scholar
  17. Louise, R.: 1982c, The Moon and the Planets 27, 59–62.Google Scholar
  18. Louise, R.: 1982d, Astrophys. Space Sci. 86, 505–508.Google Scholar
  19. Molchanov, A. M.: 1973, in Modern Problems of Celestial Mechanics and Astrodynamics, Nauka, Moscow.Google Scholar
  20. Neuhauser, R. and Feitzinger, J. V.: 1986, Astron. Astrophysics 170, 174–178.Google Scholar
  21. Nieto, M. M.: 1972, The Titius-Bode Law of Planetary Distances: Its History and Theory, Pergamon Press, Oxford-New York.Google Scholar
  22. Oldershaw, R. L.: 1982, International Journal of General Systems 8, 1–5.Google Scholar
  23. Pippard, A. B.: 1983, The Physics of Vibration. The Simple Vibrator in Quantum Mechanics, Cambridge University Press, London-New York.Google Scholar
  24. Pletser, V.: 1986, Earth, Moon, and Planets 36, 193–210.Google Scholar
  25. Pletser, V.: 1988a, Earth, Moon, and Planets 41, 295–300.Google Scholar
  26. Pletser, V.: 1988b, Earth, Moon, and Planets 42, 1–18.Google Scholar
  27. Pletser, V.: 1989, Earth, Moon, and Planets 46, 285–295.Google Scholar
  28. Rawal, J. J.: 1989, Earth, Moon, and Planets 44, 295–296.Google Scholar
  29. Saslaw, W. C.: 1987, Gravitational Physics of Stellar and Galactic Systems, Cambridge University Press, England.Google Scholar
  30. Shklovsky, I. S.: 1988, in Problems of Modern Astrophysics, Nauka, Moscow.Google Scholar
  31. Tchetchelnitsky, A. M.: 1980, Extremes, Stability, and Resonances in the Astrodynamics and Astronautics, Mashinostoenie, Moscow.Google Scholar
  32. Tchetchelnitsky, A. M.: 1986, in Space Vehicle Dynamics and Space Exploration, edited by G. A. Tjulin, Mashinostroenie, Moscow.Google Scholar
  33. Wayte, R: 1982, The Moon and the Planets 26, 11–32.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • V. N. Damgov
    • 1
  • D. B. Douboshinsky
    • 1
  1. 1.Bulgarian Academy of Sciences, Space Research InstituteSofiaBulgaria

Personalised recommendations