Journal of Low Temperature Physics

, Volume 31, Issue 1–2, pp 193–222 | Cite as

Refrigeration by adiabatic demagnetization of nuclear spins

  • S. Y. Shen
  • J. B. Ketterson
  • W. P. Halperin

A model is presented for a nuclear demagnetization cooling system in which the metallic refrigerant is distributed over a region where the magnetic field varies by a large amount. A method employing “quasi-steady-state” approximations is used to solve the problem in the framework of finite difference procedures. The predictions from the model are used to establish a number of design parameters in cryostats for studies of superfluid 3He and ultra-low-temperature metals physics.


Magnetic Field Finite Difference Design Parameter Magnetic Material Refrigeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Andres and E. Bucher, J. Low Temp. Phys. 9, 267 (1972).Google Scholar
  2. 2.
    R. G. Gylling, Acta Polytech. Scand., No. Ph 81 (1971); A. I. Ahonen, M. T. Haikala, M. Krusius, and O. V. Lounasmaa, Phys. Rev. Lett. 33, 628 (1974); J. M. Dundon, D. L. Stolfa, and J. M. Goodkind, Phys. Rev. Lett. 30, 843 (1973); K. Andres, W. O. Sprenger, and D. D. Osheroff, in Low Temperature Physics—LT14(North-Holland, Amsterdam, 1975), Vol. 4, p. 1.Google Scholar
  3. 3.
    A. I. Ahonen, P. M. Berglund, M. T. Haikala, M. Krusius, O. V. Lounasmaa, and M. A. Paalanen, Cryogenics 16, 521 (1976).Google Scholar
  4. 4.
    A. Abragam, The Principles of Nuclear Magnetism (Oxford Univ. Press, London, 1961).Google Scholar
  5. 5.
    J. Korringa, Physica 16, 601 (1950).Google Scholar
  6. 6.
    O. V. Lounasmaa, Experimental Principles and Methods below 1 K(Academic Press, London, 1974).Google Scholar
  7. 7.
    N. Kurti, Adv. Cryogen. Eng. 8, 1 (1963).Google Scholar
  8. 8.
    G. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems (PrenticeHall, Englewood Cliffs, New Jersey, 1967).Google Scholar
  9. 9.
    A. I. Ahonen, private communication.Google Scholar
  10. 10.
    J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).Google Scholar
  11. 11.
    P. D. Roach, B. M. Abraham, P. R. Roach, and J. B. Ketterson, J. Low Temp. Phys. 22, 301 (1976).Google Scholar
  12. 12.
    N. Karnezos and L. B. Welsh, Phys. Rev. B 12, 4790 (1975).Google Scholar
  13. 13.
    Varian NMR Table, 4th ed. (Varian Associates).Google Scholar
  14. 14.
    C. J. Smithells, Metals Reference Book (Plenum Press, New York, 1967), Vol. III.Google Scholar
  15. 15.
    Y. Eckstein, J. B. Ketterson, and M. G. Priestley, Phys. Rev. 148, 586.Google Scholar
  16. 16.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).Google Scholar
  17. 17.
    G. C. Carter, L. H. Bennett, and D. J. Kahan, Metallic Shifts in NMR (Pergamon, 1977).Google Scholar
  18. 18.
    R. A. Buhrman and W. P. Halperin, J. Low Temp. Phys. 16, 409 (1974).Google Scholar
  19. 19.
    O. V. Lounasmaa, private communication.Google Scholar
  20. 20.
    J. A. Konter, R. Hunik, and W. J. Huiskamp, Cryogenics 17, 145 (1977); and W. Truscott, private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • S. Y. Shen
    • 1
  • J. B. Ketterson
    • 1
  • W. P. Halperin
    • 1
  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanston

Personalised recommendations