Advertisement

Earth, Moon, and Planets

, Volume 38, Issue 1, pp 13–20 | Cite as

Velocity-height relation for antimatter meteors

  • P. M. Papaelias
Article

Abstract

A general velocity-height relation for both antimatter and ordinary matter meteor is derived. This relation can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaeyOeI0YaaSaaaeaacaWGdbaabaGaamOqaiabew8a1naaBaaa% leaacqGHEisPaeqaaaaakmaacmaabaGaaGymaiabgkHiTiaabwgaca% qG4bGaaeiCamaadmaabaGaeyOeI0YaaSaaaeaacaWGcbaabaGaamyy% aaaacaqGLbGaaeiEaiaabchacaqGOaGaaeylaiaadggacaWG6bGaai% ykaaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaacYcaaaa!64FD!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right] - \frac{C}{{B\upsilon _\infty }}\left\{ {1 - {\text{exp}}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right]} \right\},\]where υ z is the velocity of the meteoroid at height z, υ its velocity before entrance into the Earth's atmosphere, α is the scale-height, and C parameter proportional to the atom-antiatom annihilation cross- section, which is experimentally unknown. The parameter B (B = DAϱ0/m) is the well known parameter for koinomatter (ordinary matter) meteors, D is the drag factor, ϱ0 is the air density at sea level, A is the cross sectional area of the meteoroid and m its mass.

When the annihilation cross-section is zero — in the case of ordinary meteors — the parameter C is also zero and the above derived equation becomes % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaaiilaaaa!4CF5!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right],\]which is the well known velocity-height relation for koinomatter meteors.

In the case in which the Universe contains antimatter in compact solid structure, the velocity-height relation can be found useful.

Keywords

Atmosphere Cross Sectional Area Sectional Area Solid Structure Ordinary Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfvén, H. and Klein, O.: 1962, ‘Matter-Antimatter Annihilation and Cosmology’, Arkiv Fysik 23, 187.Google Scholar
  2. Alfvén, H.: 1965, ‘Antimatter and the Development of the Metagalaxy’, Rev. Mod. Phys. 37, Nr. 8.Google Scholar
  3. Alfvén, H.: 1966, Worlds-Antiworlds, W. H. Freeman, London.Google Scholar
  4. Alfvén, H. and Elvius, A.: 1969, ‘Antimatter Quasi Stellar Objects and the Evolution of Galaxies’, Science 164, 911.Google Scholar
  5. Alfvén, H.: 1981, Cosmic Plasma, Astrophysics and Space Science Library, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  6. Buchwald, V. F.: 1975, Handbook of Iron Meteorites, Vol. 1, University of California Press.Google Scholar
  7. Cowan, C., Alturi, C. R., and Libby, W. F.: 1965, ‘Possible Antimatter Content of the Tunguska Meteor of 1908’, Nature 206, 861.Google Scholar
  8. Lehnert, B.: 1977, ‘Problems of Matter-Antimatter Boundary Layers’, Astrophys. Space Sci. 46, 61.Google Scholar
  9. Lehnert, B.: 1978, ‘Matter-Antimatter Boundary Layers with a Magnetic Neutral Sheet’, Astrophys. Space Sci. 53, 459.Google Scholar
  10. Morgan, D. L. and Hughes, V. W.: 1970, ‘Atomic Processes Involved in Matter-Antimatter Annihilation’, Phys. Rev. D2, 1389.Google Scholar
  11. Naunberg, M. and Ruderman, M. A.: 1966, ‘Antimatter in the Earth's Atmosphere’, Phys. Letters 22, 512.Google Scholar
  12. öpik,E. J.: 1958, Physics of Meteor Flight in the Atmosphere, Interscience Tracts of Physics and Astronomy, New York.Google Scholar
  13. Papaelias, P.M.: 1983, ‘Study of the Atom-Antiatom Annihilation Cross-Section and of the Behaviour of Antimatter Meteors in the Earth's Atmosphere’, Thesis, Athens.Google Scholar
  14. Rogers, S. and Thompson, W. B.: 1980, in Defence of Antimatter, Astrophysics and Space Science Library, Vol. 71, p.257.Google Scholar
  15. Sofia, S. and Van Horn, H. M.: 1974, ‘The Origin of the Cosmic Gamma Ray Bursts’, Astrophys. J. 194, 593.Google Scholar
  16. Stecker, F. W., Morgan, D. L., and Bredecamp, J.: 1971, ‘Possible Evidence for the Existence of Antimatter on a Cosmological Scale in the Universe’, Phys. Rev. Letters 27, 1469.Google Scholar
  17. Stecker, F. W., Protheroe, R. J., and Kazanas, D.: 1981, ‘Cosmic Ray Antimatter: Is it Primary or Secondary?’, NASA Technical Memorandum No. 82118.Google Scholar
  18. Steigman, G.: 1969, ‘Antimatter and Cosmology’, Nature 224, 477.Google Scholar
  19. Steigman, G.: 1976, ‘Observational Tests on Antimatter Cosmologies’, Ann. Rev. Astron. Astrophys. 14, 339.Google Scholar
  20. Szabelski, J., Wdowczyk, J., and Wolfendale, A. W.: 1980, ‘Antimatter in the Primary Cosmic Radiation, Nature 285, 386.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • P. M. Papaelias
    • 1
  1. 1.Astrophysics Laboratory, Astrophysics, Astronomy and Mechanics Unit, Dept. of PhysicsNational University of AthensGreece

Personalised recommendations