Journal of Atmospheric Chemistry

, Volume 14, Issue 1–4, pp 315–337 | Cite as

Sulfur emissions to the atmosphere from natural sourees

  • T. S. Bates
  • B. K. Lamb
  • A. Guenther
  • J. Dignon
  • R. E. Stoiber
Article

Abstract

Emissions of sulfur gases from both natural and anthropogenic sources strongly influence the chemistry of the atmosphere. To assess the relative importance of these sources we have combined the measurements of sulfur gases and fluxes during the past decade to create a global emission inventory. The inventory, which is divided into 12 latitude belts, takes into account the seasonal dependence of sulfur emissions from biogenic sources. The total emissions of sulfur gases from natural sources are approximately 0.79 Tmol S/a. These emissions are 16% of the total sulfur emissions in the Northern Hemisphere and 58% in the Southern Hemisphere. The inventory clearly shows the impact of anthropogenic sulfur emissions in the region between 35° and 50°N.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackman R.G., C.S. Tocher, and J. McLachlan (1966) Occurrence of dimethyl-b-propiothetin in marine phytoplankton.J. Fish. Res. Bd. Canada,23:357–364.Google Scholar
  2. Adams D.F., S.O. Farwell, E. Robinson, M.R. Pack, and W.L. Bamesberger (1981) Biogenic sulfur source strengths.Environ. Sci. Technol.,15:1493–1498.Google Scholar
  3. Andreae M.O. (1985) Dimethylsulfide in the water column and the sediment pore waters of the Peru upwelling areas.Limnol. Oceanogr.,30:1208–1218.Google Scholar
  4. Andreae M.O. (1986) The ocean as a source of atmospheric sulfur compounds. In:The Role of Air-Sea Exchange in Geochemical Cycling, P. Buat-Menard, ed., Reidel, Dordrect, 331–362.Google Scholar
  5. Andreae M.O., E.V. Browell, M. Garstang, G.L. Gregory, R.C. Harriss, G.F. Hill, D.J. Jacob, M.C. Pereira, G.W. Sachse, A.W. Setzer, P.L. Silva Dias, R.W. Talbot, A.L. Torres, and S.C. Wofsey (1988) Biomass burning emissions and associated haze layers over amazonia.J. Geophys. Res.,93:1509–1527.Google Scholar
  6. Andreae M.O. and T.W. Andreae (1988) The cycle of biogenic sulfur compounds over the Amazon Basin. 1. Dry season.J. Geophys. Res.,93:1487–1497.Google Scholar
  7. Andreae M.O., and W.R. Barnard (1984) The marine chemistry of dimethylsulfide.Mar. Chem.,14:267–279.Google Scholar
  8. Andreae M.O., H. Berresheim, H. Bingemer, D.L. Jacob, B.L. Lewis, S.M. Le, and R.W. Talbot (1990) The atmospherie sulfur cycle over the Amazon basin. 2. Wet season.J. Geophys. Res.,95:16,813–16,824.Google Scholar
  9. Andreae M.O., R.J. Charlson, F. Bruynseels, H. Storms, R.Van Grieken and W. Maenhaut (1986) Salts, silicates, and sulfates: internal mixture in marine acrosols.Science,232:1620–1623.Google Scholar
  10. Andreae M.O. and H. Raemdonck (1983) Dimethylsulfide in the surface ocean and the marine atmosphere: A global view.Science,221:744–747.Google Scholar
  11. Asher, W.E., E.C. Monahan, R. Wanninkhof, and T.S. Bates (1990) Correlation of fractional foam coverage with gas transport rates. Proceedings of the Second International Symposium on Gas Transfer, Minneapolis, MN.Google Scholar
  12. Barnard W.R., M.O. Andreae, W.E. Watkins, H. Bingemer, and H.W. Georgii (1982) The flux of dimethylsulfide from the oceans to the atmosphere.J. Geophys. Res.,87:8787–8793.Google Scholar
  13. Barnard W.R., M.O. Andreae, and R.L. Iverson (1984) Dimethylsulfide andPhaeocystis pouchetti in the southeastern Bering Sea.Cont. Shelf Res.,3:103–113.Google Scholar
  14. Bates T.S. and J.D. Cline (1985) The role of the ocean in a regional sulfur cycle.J. Geophys. Res.,90:9168–9172.Google Scholar
  15. Bates T.S., J.D. Cline, R.H. Gammon, and S.R. Kelly-Hansen (1987) Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere.J. Geophys. Res.,92:2930–2938.Google Scholar
  16. Bates T.S., J.E. Johnson, P.K. Quinn, P.D. Goldan, W.C. Kuster, D.C. Covert, and C.J. Hahn (1990) The biogeochemical sulfur cycle in the marine boundary layer over the Northeast Pacific Ocean.J. Atmos. Chem.,10:59–81.Google Scholar
  17. Belviso S., B.C. Nguyen, and P. Allard (1986) Estimate of carbonyl sulfide (OCS) volcanic source strength deduced from OCS/CO2 ratios in volcanic gases.Geophys. Res. Let.,13:133–136.Google Scholar
  18. Berresheim H. (1987) Biogenic sulfur emissions from the subantarctic and antarctic oceans.J. Geophys. Res.,92:13,245–13,262.Google Scholar
  19. Berresheim H., M.O. Andreae, G.P. Ayers, R.W. Gillet, J.T. Merrill, V.J. Harris, and W.L. Chameides (1990) Airborne measurements of dimethylsulfide, sulfur dioxide, and acrosol ions over the southern ocean south of Australia.J. Atmos. Chem.,10:342–370.Google Scholar
  20. Bigg E.K., J.L. Gras, and C. Evans (1984) Origin of Aitken particles in remote regions of the southern hemisphere.J. Atmos. Chem. 1:203–214.Google Scholar
  21. Blanchard D.C. (1985) The oceanic production of atmospheric sea salt.J. Geophys. Res.,90:961–963.Google Scholar
  22. Blanchard D.C. and A.H. Woodcock (1957) Bubble formation and modification in the sea and its meteorological significance.Tellus,9:145–148.Google Scholar
  23. Blanchard D.C., A.H. Woodcock, and R.J. Cipriano (1984) The vertical distribution of the concentration of sea salt in the marine atmosphere near Hawaii.Tellus,36B:118–125.Google Scholar
  24. Brimblecombe P. and D. Shooter (1986) Photo-oxidation of dimethylsulfide in aqueous solution.Mar. Chem.,19:343–353.Google Scholar
  25. Brown K.A. and J.N.B. Bell (1986) Vegetation—the missing sink in the global cycle of carbonyl sulphide (OCS).Atmos. Environ.,20:537–540.Google Scholar
  26. Cantoni G.L. and D.G. Anderson (1956) Enzymatic cleavage of dimethylpropiothetin byPolysiphonia lanosa.J. Biol. Chem.,222:171–177.Google Scholar
  27. Carroll M.A., L.E. Heidt, R.J. Cieerone and R.G. Prinn (1986) OCS, H2S, and CS2 fluxes from a salt water marsh.J. Atmos. Chem.,4:375–395.Google Scholar
  28. Challenger F. and M.I. Simpson (1948) Studies on biological methylation. Part XII. A precursor of dimethyl sulfide evolved byPolysiphonia fastigiata. Dimethyl-2-carboxyethyl sulphonium hydroxide and its salts.J. Chem. Soc.,1948:1591–1597.Google Scholar
  29. Charlson, R.J., J. Langner, and H. Rodhe (1990) Perturbations of the northern hemisphere radiative balance by backscattering of anthropogenic sulfate acrosols.Tellus, in press.Google Scholar
  30. Charlson R.J., J.E. Lovelock, M.O. Andreae, and S.G. Warren (1987) Occanic phytoplankton, atmospheric sulfur, cloud albedo and climate: a geophysiological feedback.Nature,326:655–661.Google Scholar
  31. Cline J.D. and T.S. Bates (1983) Dimethylsulfide in the equatorial Pacific Ocean: A natural source of sulfur to the atmosphere.Geophys. Res. Lett.,10:949–952.Google Scholar
  32. Cooper D.J., W.Z.de Mello, W.J. Cooper, R.G. Zika, E.S. Saltzman, J.M. Prospero, and D.L. Savoie (1987a) Short-term variability in biogenic sulphur emissions from a FloridaSpartina alternifora marsh.Atmos. Environ.,21:7–12.Google Scholar
  33. Cooper, D.J. and E.S. Saltzman (1990) Ocean/atmosphere exchange of dimethylsulfide: evidence for a lower flux.Nature, in press.Google Scholar
  34. Cooper W.J., D.J. Cooper, E.S. Saltzman, W.Z.de Mello, D.L. Savoie, R.G. Zika, and J.M. Prospero (1987b) Emissions of biogenic sulphur compounds from several wetland soils in Florida.Atmos. Environ.,21:1491–1495.Google Scholar
  35. Cooper, W.J. and P.A. Matrai (1989) Distribution of dimethylsulfide in the oceans: a review. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 140–151.Google Scholar
  36. Cutter G.A. and C.F. Krahforst (1988) Sulfide in surface waters of the western Atlantic Ocean.Geophys. Res. Let.,15:1393–1396.Google Scholar
  37. Dacey J.W.H. and N.V. Blough (1987) Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide.Geophys. Res. Let.,14:1246–1249.Google Scholar
  38. Dacey J.W.H., G.M. King, and S.G. Wakeham (1987) Factors controlling emission of dimethylsulfide from salt marshes.Nature,330:643–645.Google Scholar
  39. Dacey J.W.H. and S.G. Wakeham (1986) Oceanic dimethylsulfide: production during zooplankton grazing on phytoplankton.Science,233:1314–1316.Google Scholar
  40. Delmas R. (1982) On the emissions of carbon, nitrogen, and sulfur to the atmosphere during bushfires in intertropical savannah zones.Geophys. Res. Lett.,9:761–764.Google Scholar
  41. Delmas R. and J. Servant (1988) The atmospheric sulfur cycle in the tropics. In:Acidification in Tropical Countries. H. Rodhe and R. Herrera, eds., John Wiley and Sons Ltd., London, 43–72.Google Scholar
  42. de Mello W.Z., D.J. Cooper, W.J. Cooper, E.S. Saltzman, R.G. Zika, D.L. Savoic, and J.M. Prospero (1987) Spatial and diel variability in the emissions of some biogenic sulfur compounds from a FloridaSpartina alterniflora coastal zone.Atmos. Environ.,21:987–990.Google Scholar
  43. Dignon J. and S. Hameed (1989) Historic emissions of sulfur and nitrogen oxides from 1860 to 1980.J. Air Poll. Con. Assoc.,39:180–186.Google Scholar
  44. Dignon, J. (1990) NOx and SOx emissions from fossil fuel: a global distribution.Atmos. Environ., in press.Google Scholar
  45. Dignon, J. and J.E. Penner (1990) Biomass burning: a source of nitrogen oxides in the atmosphere. Proceedings of the Chapman Conference on Biomass Burning. In press.Google Scholar
  46. Dyrssen D. (1989) Biogenic sulfur in two different marine environments.mar. Chem.,28:241–249.Google Scholar
  47. Elliott S. (1988) Linear free energy techniques for estimation of metal sulfide complexation complexes.Mar. Chem.,24:203–213.Google Scholar
  48. Elliott S. and F.S. Rowland (1990) The effect of metal complexation on hydrogen sulfide transport across the sea-air interface.J. Atmos. Chem.,10:315–327.Google Scholar
  49. Elliott S., E. Lu, and F.S. Rowland (1987) Carbonyl sulfide hydrolysis as a source of hydrogen sulfide in open ocean seawater.Geophys. Res. Let.,14:131–134.Google Scholar
  50. Elliott, S., E. Lu, and F.S. Rowland (1989) The hydrogen sulfides in oxic seawater. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 314–330.Google Scholar
  51. Erickson III, D.J., J.J. Walton, S.J. Ghan, and J.E. Penner (1990) Three-dimensional modelling of the global atmospheric sulfur cycle: a first step.Atmos. Environ., in press.Google Scholar
  52. Eriksson E. (1963) The yearly circulation of sulfur in nature.J. Geophys. Res.,68:4001–4008.Google Scholar
  53. Fall R., D.L. Albritton, R.C. Fehsenfeld, W.C. Kuster, and P.D. Goldan (1988) Laboratory studies of some environmental variables controlling sulfur emissions from plants.J. Atmos. Chem.,6:341–362.Google Scholar
  54. Ferek R.J. and M.O. Andreae (1983) The supersaturation of carbonyl sulfide in surface waters of the Pacific Ocean off Peru.Geophys. Res. Let.,10:393–396.Google Scholar
  55. Ferek R.J. and M.O. Andreae (1984) Photochemical production of carbonyl sulphide in marine surface waters.Nature,307:148–150.Google Scholar
  56. Filner P., H. Rennenberg, J. Sekiya, R.A. Bressan, L.G. Wilson, L.Le Cureux, and T. Shimei (1984) Biosynthesis and emission of hydrogen sulfide by higher plants. In:Gaseous Air Pollutants and Plant Metabolism, M.J. Koziol and F.R. Whatley, eds., Butterworths, London, 291–312.Google Scholar
  57. Friend J.P. (1973) The global sulfur cycle. In:Chemistry of the Lower Atmosphere, S.I. Rasool, ed., Plenum Press, New York, NY, 177–201.Google Scholar
  58. Galloway J.N. (1985) The ceposition of sulfur and nitrogen from the remote atmosphere. In:The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, J.N. Galloway, R.J. Charlson, M.O. Andreae, and H. Rodhe, eds., Reidel, Dordrecht, 143–176.Google Scholar
  59. Goldan P.D., R. Fall, W.C. Kuster, and F.C. Fehsenfeld (1988) Uptake of OCS by growing vegetation: a major tropospheric sink.J. Geophys. Res.,93:14,186–14,192.Google Scholar
  60. Goldan P.D., W.C. Kuster, D.L. Albritton, and F.C. Fehsenfeld (1987) The measurement of natural sulfur emissions from soils and vegetation: three sites in the eastern United States revisited.J. Atmos. Chem.,5:439–467.Google Scholar
  61. Granat, L., H. Rodhe, and R.U. Hallberg (1976) The global sulfur cycle. In:Nitrogen, Phosphorus and Sulfur-Global Cycles, B.H. Svensson and R. Soderlund, eds., Ecol. Bull. Stockholm, 22, 89–134.Google Scholar
  62. Green R. (1962) Biosynthesis of dimethyl-b-propiothetin.J. Biol. Chem.,237:2251–2254.Google Scholar
  63. Guenther, A.B., B.K. Lamb, and H.H. Westberg (1989) U.S. National biogenic sulfur emissions inventory. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 14–30.Google Scholar
  64. Hameed S. and J. Dignon (1988) Changes in the geographical distributions of global emissions of NOx and SOx from fossil-fuel combustion between 1966 and 1980.Atmos. Environ.,22:441–449.Google Scholar
  65. Hameed, S. and J. Dignon (1990) Global emissions of nitrogen and sulfur oxides in fossil fuel combustion: 1970–1986.J. Air Poll. Con. Assoc., in press.Google Scholar
  66. Hao, W.M., M.H. Liu, and P.J. Crutzen (1989) Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, bases on FAO statistics for the period 1975–1980. Presented at the Third International Symposium on Fire Ecology, Freiburg, FDR, May 16–20.Google Scholar
  67. Hass P. (1935) The liberation of methyl sulphide by sea-weed.Biochem. J.,29:1297–1299.Google Scholar
  68. Hegg D.A., L.F. Radke, R.V. Hobbs, C.A. Brock, and R.J. Riggan (1987) Nitrogen and sulfur emissions from the burning of forest products near large urban areas.J. Geophys. Res.,92:14,701–14,709.Google Scholar
  69. Henderson-Sellers A., M.F. Wilson, G. Thomas, R.E. Diekinson (1986) Current Global Land-Surface Data Sets for Use in Climate-Related Studies, NCAR/TN-272+STR, Atmospheric Analysis and Prediction Division, National Center for Atmospheric Research, Boulder, CO.Google Scholar
  70. Hileman, B. (1990) Biomass burning: Environment hurt more than thought. Chemical and Engineering News, March 26, 4–5.Google Scholar
  71. Hines M.E. and M.C. Morrison (1989) Emissions of biogenic sulfur compounds from Alskan tundra.Eos,70:284.Google Scholar
  72. Hobbs P.V. (1971) Simultaneous airborne measurements of cloud condensation nuclei and sodium-containing particles over the ocean.Quart. J. R. Met. Soc.,97:263–271.Google Scholar
  73. Hofmann D.J. (1990) Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years.Science,248:996–1000.Google Scholar
  74. Holmen K., and P. Liss (1984) Models for air-water gas transfer: an experimental investigation.Tellus,36B:92–100.Google Scholar
  75. Iverson R.L., F.L. Nearhoof, and M.O. Andreae (1989) Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters.Limnol. Oceanogr.,34:53–67.Google Scholar
  76. Johnson J.E. and B. Harrison (1986) Carbonyl sulfide concentrations in the surface waters and above the Pacific Ocean.J. Geophys. Res.,91:7883–7888.Google Scholar
  77. Jorgensen B.B. and B. Okholm-Hansen (1985) Emissions of biogenic sulfur gases from a Danish estuary.Atmos. Environ.,19:1737–1749.Google Scholar
  78. Keller, M.D., W.K. Bellows, and R.R.L. Guillard (1989) Dimethylsulfide production in marine phytoplankton. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 167–182.Google Scholar
  79. Khalil M.A.K. and R.A. Rasmussen (1984) Global sources, lifetimes, and mass balances of carbonyl sulfide (OCS) and carbon disulide (CS2) in the earth's atmosphere.Atmos. Environ.,18:1805–1813.Google Scholar
  80. Kiene R.P. and T.S. Bates (1990) Biological removal of dimethylsulphide from sea water.Nature,345:6277–6279.Google Scholar
  81. Kiene R.P. and P.T. Visscher (1987) Production and rate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments.Appl. Environ. Microbiol.,53:2426–2434.Google Scholar
  82. Kim K.H. and M.O. Andreae (1987) Carbon disulfide in seawater and the marine atmosphere over the north Atlantic.J. Geophys. Res.,92:14,733–14,738.Google Scholar
  83. Lacey C.J., J. Walker, and I.R. Noble (1982) Fire in Australian tropical savannas. In:Ecology of Tropical Savannas, B.J. Huntley and B.H. Walker, eds., Ecological Studies 42, Springer Verlag, New York.Google Scholar
  84. Lamb B.K., H. Westberg, G. Allwine, L. Bamesberger, and G. Guenther (1987) Measurement of biogenic sulfur emissions from soils and vegetation: application of dynamic enclosure methods with Natusch Filter and GC/FPD analysis.J. Atmos. Chem.,5:469–491.Google Scholar
  85. Leck C., U. Larsson, L.E. Bagander, S. Johansson, and S. Hajdu (1990) Dimethylsulfide in the Baltic Sea: Annual variability in relation to biological activity.J. Geophys. Res.,95:3353–3364.Google Scholar
  86. Leck, C. and H. Rodhe (1990) Emissions of marine biogenic sulfur to the atmosphere of northern Europe.J. Atmos. Chem., in press.Google Scholar
  87. Ledwell J.R. (1984) The variation of the gas transfer coefficient with molecular diffusivity, In:Gas Transfer at Water Surfaces, W. Brutsaert and G.H. Jirka, eds., Reidel, Hingham, MA, 293–302.Google Scholar
  88. Levitus S. (1982) Climatological Atlas of the World Ocean, NOAA Professional Paper 13, DOC/NOAA, U.S. Government Printing Office, Washington DC 20402, 173 pp.Google Scholar
  89. Liss P.S. (1973) Processes of gas exchange across an air-water interface.Deep Sea Res.,20:221–238.Google Scholar
  90. Liss P.S. and L. Merlivat (1986) Air-sea gas exehange rates: introduction and synthesis. In:The Role of Air-Sea Exchange in Geochemical Cycling, P. Buat-Menard, ed., Reidel, Hinghan, MA, 113–127.Google Scholar
  91. Logan, J.A., J. Dignon, and E. Gottlieb (1990) Biomass burning in the global budget of CO: A study using a chemical tracer model. Proceedings of the Chapman Conference on Biomass Burning, in press.Google Scholar
  92. Lovelock J.E. (1974) CS2 and the natural sulfur cycle.Nature,248:625–626.Google Scholar
  93. Lovelock J.E., R.J. Maggs, and R.A. Rasmussen (1972) Atmospheric dimethylsulfide and the natural sulfur cycle.Nature,237:452–453.Google Scholar
  94. MacTaggart D., D. Adams, and S. Farwell (1987) Measurement of biogenic sulfur emissions from soils and vegetation using dynamic enclosure methods: Total sulfur gas fluxes via MFC/FD/FPD determinations.J. Atmos. Chem.,5:417–437.Google Scholar
  95. Malinconico L.L.Jr. (1987) On the variations of SO2 emission from volcanos.J. Volcanol. Geotherm. Res.,33:231–237.Google Scholar
  96. Matthews E. (1982) Global vegetation and land use: new high resolution data bases for climate studies.J. Clim. Applied Meteor.,22:474–487.Google Scholar
  97. Matrai P.A. (1989) Determination of sulfur in ocean particulates by combustion fluorescence.Mar. Chem.,26:227–238.Google Scholar
  98. McClelland L., T. Simkin, M. Summers, E. Nielson, T.C. Stein (1989) Global Volcanism 1975–1985, American Geophysical Union, Washington, DC.Google Scholar
  99. Mellilo J.M. and P.A. Steudler (1989) The effect of nitrogen fertilizer on the OCS and CS2 emissions from temperate forest soils.J. Atmos. Chem.,9:411–417.Google Scholar
  100. Mihalopoulos N., B. Bonsang, B.C. Nguyen, M. Kanakidou and S. Belviso (1989) Field observations of carbonyl sulfide deficit near the ground: possible implications of vegetation.Atmos. Environ.,23:2159–2166.Google Scholar
  101. Nguyen B.C., S. Belviso, N. Mihalopoulos, J. Gostan and P. Nival (1988) Dimethylsulfide production during natural phytoplanktonic blooms.Mar. Chem.,24:133–141.Google Scholar
  102. Nguyen B.C., B. Bonsang, and A. Gaudry (1983) The role of the ocean in the global atmospheric sulfur cycle.J. Geophys. Res.,88:10,903–10,914.Google Scholar
  103. Nriagu J.O. and D.A. Holdway (1989) Production and release of dimethylsulfide from the Great Lakes.Tellus,41B:161–169.Google Scholar
  104. Patterson E.M., C.S. King, A.C. Delany, A.F. Warburg, A.C.D. Leslie, and B.J. Huebert (1980) Global measurements of aerosols in remote continental and marine regions: concentrations, size distributions, and optical properties.J. Geophys. Res.,85:7361–7376.Google Scholar
  105. Penner J.E. (1990) Cloud albedo, greenhouse effects, atmospheric chemistry and climate change.J. Air Waste Manage. Assoc.,40:461–465.Google Scholar
  106. Pinto J.P., R.P. Turco, and O.B. Toon (1989) Self-limiting physical and chemical effects in volcanic eruption clouds.J. Geophys. Res.,94:11,165–11,174.Google Scholar
  107. Rasmussen R.A., M.A.K. Khalil, and S.D. Hoyt (1982) The oceanic source of carbonylsulfide (OCS),Atmos. Environ.,16:1591–1594.Google Scholar
  108. Reed R.H. (1983) Measurement and osmotic significance of b-dimethyl-sulphoniopropionate in marine macroalgae.Mar. Biol. Let.,4:173–181.Google Scholar
  109. Rennenberg H. (1984) The fate of excess sulfur in higher plants.Ann. Rev. Plant Physiol. 35:121–153.Google Scholar
  110. Robinson J.M. (1989) On uncertainty in the computation of global emissions from biomass burning.Climatic Change,14:243–262.Google Scholar
  111. Saltzman E.S. and D.J. Cooper (1988) Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the caribbean and Gulf of Mexico.J. Atmos. Chem.,7:191–209.Google Scholar
  112. Saltzman E.S., K. Holmen, and D.J. Cooper (1988) Measurement of the piston velocity of dimethylsulfide: Implications for its air-sea exchange.Eos,69:1073.Google Scholar
  113. Savoie D.L., J.M. Prospero, and E.S. Saltzman (1989) Non-sea-salt and nitrate in trade wind aerosols at Barbados: evidence for long-range transport.J. Geophys. Res.,94:5,069–5,080.Google Scholar
  114. Savoie D.L. and J.M. Prospero (1989) Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean.Nature,339:685–687.Google Scholar
  115. Seiler W. and P.J. Crutzen (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning.Climatic Change,2:207–247.Google Scholar
  116. Shea D.J. (1986) Climatological Atlas: 1950–1979, NCAR/TN-269+STR, Atmospheric Analysis and Prediction Division, National Center for Atmospheric Research, Boulder, CO.Google Scholar
  117. Simkin T. and L. Siebert (1984) Explosive eruptions in space and time: durations, intervals and a comparison of the world's active volcanic belts. In:Explosive Volcanism: Inception, Evolution, and Hazards, Studies in Geophysics, National Academy Press, Washington, DC, 110–121.Google Scholar
  118. Simkin T., L. Siebert, L. McClelland, D. Bridge, C. Newhall, and J.H. Latter (1981)Volcanoes of the World. Hutchinson Ross, Stroudsburg, PA.Google Scholar
  119. Smethic W.M.Jr., T. Takahashi, D.W. Chipman and J.R. Ledwell (1985) Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from222Rn and pCO2 measurements.J. Geophys. Res.,90:7005–7022.Google Scholar
  120. Sorensen J. (1988) Dimethylsulfide and methane thiol in sediment porewater of a Danish estuary.Biogeochem.,6:201–210.Google Scholar
  121. Staubes R., H.W. Georgii, and G. Ockelmann (1989) Flux of OCS, DMS, and CS2 from various soils in Germany.Tellus,41B:305–313.Google Scholar
  122. Steudler P.A., and B.J. Peterson (1985) Annual cycle of gaseous sulfur emissions from a New EnglandSpartina alterniflora marsh.Atmos. Environ.,19:1411–1416.Google Scholar
  123. Stoiber R.E., S.N. Williams, and B. Huebert (1987) Annual contribution of sulfur dioxide to the atmosphere by volcanos.J. Volcanol. Geotherm. Res.,33:1–8.Google Scholar
  124. Summers P.W. and W. Fricke (1989) Atmospheric decay distances and times for sulphur and nitrogen oxides estimated from air and precipitation monitoring in eastern Canada.Tellus,41B:286–295.Google Scholar
  125. Suylen G.M.H., G.C. Steless, and J.G. Kuenen (1986) Chemolithotrophic potential of a hyphomicrobium species capable of growth on methylated sulphur compounds.Arch. Microbiol. 146:192–198.Google Scholar
  126. Tauber H. (1949)The Chemistry and Technology of Enzymes. Wiley, New York.Google Scholar
  127. Taylor, B.F., and R.P. Kiene (1989) Microbial metabolism of dimethyl-sulfide. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 202–221.Google Scholar
  128. Turner S.M. and P.S. Liss (1985) Measurements of various sulphur gases in a coastal marine environment.J. Atmos. Chem.,2:223–232.Google Scholar
  129. Turner, S.M., G. Malin, and P.S. Liss (1989) Dimethylsulfide and (dimethylsulfonio)propionate in European coastal and shelf waters. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 183–201.Google Scholar
  130. Turner S.M., G. Malin, P.S. Liss, D.S. Harbour, and P.M. Holligan (1988) The seasonal variation of dimethyl sulfide and dimethyl-sulfoniopropionate concentrations in nearshore waters.Limnol. Oceanogr.,33:364–375.Google Scholar
  131. Vairavamurthy A., M.O. Andreae, and R.L. Iverson (1985) Biosynthesis of dimethylsulfide and dimethylpropiothetin byHymenomonas carterae in relation to sulfur source and salinity variations.Limnol. Oceanogr.,30:59–70.Google Scholar
  132. Varhelyi G. (1985) Continental and global sulfur budgets-I. Anthropogenic SO2 emissions.Atmos. Environ.,19:1029–1040.Google Scholar
  133. Varhelyi G. and G. Gravenhorst (1983) Production rate of airborne sea-salt sulfur deduced from chemical analysis of marine aerosols and precipitation.J. Geophys. Res.,88:6737–6751.Google Scholar
  134. Wilson M.F. and A. Henderson-Sellers (1985) A global archive of land cover and soils data for use in general circulation climate models.J. Clim.,5:119–143.Google Scholar
  135. Zinder S.H., W.N. Doemel and T.D. Brock (1977) Production of volatile sulfur compounds during the decomposition of algal mats.App. Environ. Microbiol.,34:859–860.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • T. S. Bates
    • 1
  • B. K. Lamb
    • 2
  • A. Guenther
    • 3
  • J. Dignon
    • 4
  • R. E. Stoiber
    • 5
  1. 1.NOAA/Pacific Marine Environmental LaboratorySeattle
  2. 2.Laboratory for Atmospheric ResearchWashington State UniversityPullman
  3. 3.Cooperative Institute for Research in the Environmental SciencesUniversity of ColoradoBoulder
  4. 4.Lawrence Livermore National LaboratoryLivermore
  5. 5.Department of Earch SciencesDartmouth CollegeHanover

Personalised recommendations