Advertisement

Journal of Low Temperature Physics

, Volume 87, Issue 3–4, pp 595–633 | Cite as

Experimental techniques: Methods for cooling below 300 mK

  • G. Frossati
Article

There are at present three methods for cooling samples to temperatures below 300 mK: dilution, Pomeranchuk, and nuclear refrigeration. We give the basic principles of these methods with more details concerning dilutions refrigerators. This should allow the construction of a simple all plastic refrigerator for temperatures lower than 15 mK, or an even simpler Pomeranchuk cell. The source of heat leaks and other important points for reaching temperatures in the microkelvin range with nuclear refrigerators are given in the lecture by F. Pobell

Keywords

Basic Principle Magnetic Material Experimental Technique Refrigeration Dilution Refrigerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Lounasmaa, Experimental Principles and Methods Below 1 K (Academic Press, New York, 1974).Google Scholar
  2. 2.
    D. S. Betts, An Introduction to MilliKelvin Technology, Cambridge studies in Low Temperature Physics, Cambridge Univ. Press (1989).Google Scholar
  3. 3.
    D. S. Betts, Refrigeration and Thermometry Below One Kelvin, D. F. Brewer, ed., (Sussex Univ. Press, 1976).Google Scholar
  4. 4.
    R. C. Richardson and E. N. Smith, Experimental Techniques in Condensed Matter Physics at Low Temperatures, Frontiers in Physics (Addison-Wesley, Reading, MA, 1988).Google Scholar
  5. 5.
    G. K. Walters and W. M. Fairbank, Phys. Rev. 103, 262 (1956).Google Scholar
  6. 6.
    J. P. Laheurte and J. R. G. Keyston, Cryogenics 11, 485 (1971).Google Scholar
  7. 7.
    D. O. Edwards, E. M. Ifft, and R. E. Sarwinski, Phys. Rev. 177, 388 (1969).Google Scholar
  8. 8.
    A. Ghozlan and E. J. A. Varoquaux, Comptes Rendus Acad. Sci. Paris, Ser. B 280, 189 (1975).Google Scholar
  9. 9.
    H. London, Proceedings of the International Conference on Low Temperature Physics (Oxford Univ. Press, 1951).Google Scholar
  10. 10.
    H. London, G. Clarke, and E. Mendoza, Phys. Rev. 128, 1992 (1962).Google Scholar
  11. 11.
    J. Wilks and D. Betts, An Introduction to Liquid Helium, 2nd ed. (Clarendon Press, Oxford, 1987).Google Scholar
  12. 12.
    J. G. M. Kuerten, C. A. M. Castelijns, A. T. A. M. Waele, and H. M. Gijsman, Cryogenics 25, 419 (1985).Google Scholar
  13. 13.
    A. C. Anderson, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley, Phys. Rev. Lett. 16, 263 (1966).Google Scholar
  14. 14.
    A. C. Anderson, D. O. Edwards, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley, Phys. Rev. Lett. 17, 367 (1966).Google Scholar
  15. 15.
    J. P. Harrison, J. Low Temp. Phys. 37, 467 (1979).Google Scholar
  16. 16.
    L. del Castillo, G. Frossati, A. Lacaze, and D. Thoulouze, Proc. LT 13, Boulder, 1972, (Plenum, New York, 1974). Vol. 4, p. 640.Google Scholar
  17. 17.
    G. Frossati, N. F. Oliveira, E. Ter Haar, L. Skrbek, and M. Meisel (to be published).Google Scholar
  18. 18.
    G. Frossati, Proc. LT 15, Grenoble, 1978, J. de Physique, Coll. C-8 supp. 8 (1978).Google Scholar
  19. 19.
    W. R. Abel, R. T. Johnson, J. C. Wheatley, and W. Zimmermann, Phys. Rev. Lett. 18, 737 (1967).Google Scholar
  20. 20.
    R. L. Rosenbaum, J. Landau, and Y. Eckstein, J. Low Temp. Phys. 16, 131 (1974).Google Scholar
  21. 21.
    D. A. Ritchie, J. Saunders, and D. Brewer, Phys. Rev. Lett. 59, 465 (1987).Google Scholar
  22. 22.
    G. A. Vermeulen and G. Frossati, Cryogenics 27, 139 (1987).Google Scholar
  23. 23.
    I. Pomeranchuk, Zh. Eksp. Teor. Fiz. 20, 919 (1950).Google Scholar
  24. 24.
    C. C. Kranenburg, S. A. J. Wiegers, P. G. van de Haar, R. Jochemsen, and G. Frossati Jpn. J. Appl. Phys. 26, 1723, Suppl. 26–3 (1987).Google Scholar
  25. 25.
    D. M. Lee and N. D. Mermin, Scientific American, 235, 56 (December, 1976).Google Scholar
  26. 26.
    J. R. Sites, D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 23, 836 (1969).Google Scholar
  27. 27.
    D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28 (1972).Google Scholar
  28. 28.
    L. P. Roobol, S. Steel, R. Jochemsen, G. Frossati, K. S. Bedell, and A. E. Meyerovich, Europhys. Lett. 17, 219 (1992) and references therein.Google Scholar
  29. 29.
    K. Andres and O. V. Lounasmaa, Recent progress in nuclear cooling, Proc. in Low Temp. Phys., D. F. Brewer, ed. (North-Holland, Amsterdam, 1982) Vol 8, p. 221.Google Scholar
  30. 30.
    D. S. Greywall, Phys. Rev. B 31, 1675 (1985).Google Scholar
  31. 31.
    R. M. Muller, C. Buchal, H. R. Folle, M. Kubota, and F. Pobell, Cryogenics 20, 395 (1980).Google Scholar
  32. 32.
    K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, and F. Pobell, J. Low Temp. Phys. 73, 101 (1988).Google Scholar
  33. 33.
    J. P. Carney, A. M. Guénault, G. R. Pickett, and G. R. Spencer, Phys. Rev. Lett. 62, 3042 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • G. Frossati
    • 1
  1. 1.Kamerlingh Onnes Laboratory, Leiden UniversitySB LeidenThe Netherlands

Personalised recommendations