Advertisement

Journal of Muscle Research & Cell Motility

, Volume 16, Issue 4, pp 420–429 | Cite as

Fast and slow rat muscles degenerate and regenerate differently after whole crush injury

  • Yann Bassaglia
  • Jean Gautron
Pager

Summary

The whole-crush injured rat skeletal muscle was used as a model to explore the regenerating potentialities of fast and slow muscles. Laminin was chosen to follow changes in basal lamina and desmin to visualize new muscular elements; they were revealed by immunofluorescence on cryostat sections of either fast (extensor digitorum longus) or slow (soleus) regenerating muscle. Soleus myolysis was rapid, extensive and heterogeneous. Basal laminae were nearly destroyed. In contrast, extensor digitorum longus maintained its basal lamina framework during myolysis. Soleus reconstruction began early, following the pattern of remaining basal laminae as closely as possible, but regeneration stagnated from day 16 and the regenerated muscle was fibrotic. In extensor digitorum longus, reconstruction progressed slower than in soleus, but regularly from the periphery toward the centre of the muscle. The regenerated extensor digitorum longus showed a quasi-normal structure from day 16. At the end of the process, the elimination of old basal lamina was completed in extensor digitorum longus, but was not achieved in soleus. We propose that the old basal lamina should help the initiation of reconstruction. This new model also underlines the importance of the turnover of basal laminae in muscular regeneration, and will be useful to understand the background of the different regenerative response of both muscles.

Keywords

Skeletal Muscle Laminin Regenerative Response Basal Lamina Regenerate Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALAMEDDINE, H. S., DEHAUPAS, M. & FARDEAU, M. (1989) Regeneration of skeletal muscle fibres from autologous satellite cells multiplied in vitro. An experimental model for testing cultured cell myogenicity. Muscle Nerve 12, 544–55.Google Scholar
  2. ALI, M. A. (1979) Myotube formation in skeletal muscle regeneration. J. Anat. 128, 553–62.Google Scholar
  3. ALLBROOK, D. (1981) Skeletal muscle regeneration. Muscle Nerve 4, 234–45.Google Scholar
  4. ALLEN, R. E., RANKIN, L. L. & GREENE, E. A. (1991) Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. J. Cell Physiol. 149, 525–35.Google Scholar
  5. ARMSTRONG, R. B. & PHELPS, R. O. (1984) Muscle fiber type composition of the rat hindlimb. Am. J. Anat. 171, 259–72.Google Scholar
  6. BARLOVATZ-MEIMON, G., FRISDAL, E., HANTAï, D., ANGLèS-CANO, E. & GAUTRON, J. (1990a) Slow and fast rat skeletal muscles differ in their plasminogen activator activities. Eur. J. Cell Biol. 52, 157–62.Google Scholar
  7. BARLOVATZ-MEIMON, G., FRISDAL, E., BASSAGLIA, Y., HANTAï, D., ANGLèS-CANO, E. & GAUTRON, J. (1990b) Relationship between plasminogen activators and regeneration capacities of rat skeletal muscles. In Serine protease and their serpin inhibitors in the nervous system (edited by FESTOFF, B. W.) pp. 229–41. New York: Plenum Press.Google Scholar
  8. BASSAGLIA, Y. (1991) Les cellules satellites musculaires dans deux modèles de myogénèse (in vitro et in vivo): différences entre un muscle lent et un muscle rapide. Thèse de l'Université Paris-Val de Marne.Google Scholar
  9. BENOIT, P. W. & BELT, W. D. (1972) Some effects of local anesthetic agents on skeletal muscle. Exp. Neurol. 34, 264–78.Google Scholar
  10. BORNEMAN, A. & SCHMALBRUCH, H. (1992) Desmin and vimentin in regenerating muscles. Muscle Nerve 15, 14–20.Google Scholar
  11. CALDWELL, C. J., MATTEY, D. L. & WELLER, R. O. (1990) Role of the basement membrane in the regeneration of skeletal muscle. Neuropathol. Appl. Neurobiol. 16, 225–38.Google Scholar
  12. CARLSON, B. M. (1973) The regeneration of skeletal muscle — A review. Amer. J. Anat. 137, 119–50.Google Scholar
  13. CARLSON, B. M. (1976) A quantitative study of muscle fiber survival and regeneration in normal, predenervated and Marcaine-treated free grafts in the rat. Exp. Neurol. 52, 421–32.Google Scholar
  14. CARLSON, B. M. (1986) Regeneration of entire skeletal muscles. FASEB J. 45, 1456–60.Google Scholar
  15. CARLSON, B. M. & GUTMANN, E. (1975) Regeneration in free grafts of normal and denervated muscles in the rat: morphology and histochemistry. Anat. Rec. 183, 47–62.Google Scholar
  16. CARLSON, B. M. & FAULKNER, J. A. (1983) The regeneration of skeletal muscle fibers following injury: a review. Med. Sci. Sports Exerc. 15, 187–98.Google Scholar
  17. CARLSON, B. M., HANSEN SMITH, F. M. & MAGON, D. K. (1979) The life history of a free muscle graft. In Muscle regeneration (edited by MAURO, A.) pp. 493–507. New York: Raven Press.Google Scholar
  18. COAN, M. R. & TOMANEK, R. J. (1981) The growth of regenerating soleus muscle transplants after ablation of the gastrocnemius muscle. Exp. Neurol. 71, 278–94.Google Scholar
  19. COUTEAUX, R., MIRA, J. C. & D'ALBIS, A. (1988) Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol. Cell 62, 171–82.Google Scholar
  20. D'ALBIS, A., COUTEAUX, R., JANMOT, C., ROULET, A. & MIRA, J. C. (1988) Regeneration after cardiotoxin injury of inervated and denervated slow and fast muscles of mammals. Eur. J. Biochem. 174, 103–10.Google Scholar
  21. FOSTER, A. H. & CARLSON, B. M. (1980) Myotoxicity of local anaesthetics and regeneration of the damaged muscle fibres. Anesth. Analg. 58, 727–36.Google Scholar
  22. FOSTER, R. F., THOMPSON, J. M. & KAUFMAN, S. J. (1987) A laminin substrate promotes myogenesis in rat skeletal muscle cultures: analysis of replication and development using anti-desmin and anti-BrdUrd monoclonal antibodies. Develop. Biol. 122, 11–20.Google Scholar
  23. GHINS, E., COLSON-VAN, M. & MARéCHAL, G. (1984) The origin of muscle stem cells in rat Triceps surae regenerating after mincing. J. Muscle Res. Cell Motil. 5, 711–22.Google Scholar
  24. GIBSON, M. C. & SCHULTZ, E. (1983) Age-related differences in the absolute number of satellite cells in rat Soleus and Extensor Digitorum Longus muscles. Muscle Nerve 6, 574–80.Google Scholar
  25. GRANGER, B. L. & LAZARIDES, E. (1978) The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell 15, 1253–68.Google Scholar
  26. GRANGER, B. L. & LAZARIDES, E. (1979) Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18, 1053–63.Google Scholar
  27. GROUNDS, M. D. (1991) Towards understanding skeletal muscle regeneration. Path. Res. Pract. 187, 1–22.Google Scholar
  28. GROUNDS, M. D. & MCGEACHIE, J. K. (1989) A comparison of muscle precursor replication in crush-injured skeletal muscle of Swiss and BALBc mice. Cell Tissue Res. 255, 385–91.Google Scholar
  29. GROUNDS, M. D. & MCGEACHIE, J. K. (1990) Myogenic cell replication in minced skeletal muscle isografts of Swiss and BALBc mice. Muscle Nerve 13, 305–13.Google Scholar
  30. GROUNDS, M. D. & YABLONKA-REUVENI, Z. (1993) Molecular and cell biology of skeletal muscle regeneration. In Molecular and Cell Biology of Muscular Dystrophy (edited by PARTRIDGE, T. A.) pp. 210–56. London: Chapman and Hall.Google Scholar
  31. GULATI, A. K., REDDI, A. H. & ZALEWSKI, A. A. (1983) Changes in the basement membrane zone components during skeletal muscle fibre degeneration and regeneration. J. Cell Biol. 97, 957–62.Google Scholar
  32. HANTAï, D., RAO, J. S., KAHLER, C. & FESTOFF, B. (1989) Decrease in plasminogen activator correlates with synapse elimination during neonatal development of mouse skeletal muscle. Proc. Natl. Acad. Sci. USA 86, 362–6.Google Scholar
  33. HELLIWELL, T. R. (1988) Lectin binding and desmin staining during Bupivacaine-induced necrosis and regeneration in rat skeletal muscle. J. Pathol. 155, 317–26.Google Scholar
  34. KüHL, U., ÖCALAN, M., TIMPL, R. & VONDERMARK, K. (1986) Role of laminin and fibronectin in selecting myogenic versus fibrogenic cells from skeletal muscle cells in vitro. Develop. Biol. 117, 628–35.Google Scholar
  35. KULESZA-LIPKA, D. & JAKUBIEC-PUKA, A. (1985) Degradation of α-actinin during Ca2+-sensitive proteolysis of myofibrils. FEBS Let. 187, 354–8.Google Scholar
  36. LAGORD, C., REY, C., BASSAGLIA, Y., GAUTRON, J. & MARTELLY, I. Heterogeneity of satellite cells isolated from EDL and Soleus rat muscles revealed in vitro. (submitted)Google Scholar
  37. LASH, J. W., HOLTZER, H. & SWIFT, H. (1957) Regeneration of mature skeletal muscle. Anat. Rec. 128, 679–97.Google Scholar
  38. LAZARIDES, E. (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249–56.Google Scholar
  39. LEGROSCLARK, W. E. (1946) An experimental study of the regeneration of mammalian striped muscle. J. Anat. 80, 24–36.Google Scholar
  40. MAURO, A. (1961) Satellite cell of skeletal muscle fibres. J. Biophys. Biochem. Cytol. 9, 493–5.Google Scholar
  41. MCGEACHIE, J. K. & GROUNDS, M. D. (1989) The onset of myogenesis in denervated mouse skeletal muscle regenerating after injury. Neuroscience 28, 509–14.Google Scholar
  42. NONAKA, I., TAKAGI, A., ISHIURA, S., NAKASE, H. & SUGITA, H. (1983) Pathophysiology of muscle fiber necrosis induced by Bupivacaine Hydrochloride (Marcaine). Acta Neuropathol. 60, 167–74.Google Scholar
  43. ÖCALAN, M., GOODMAN, S. L., KüHL, U., HAUSCHKA, S. D. & VONDERMARK, K. (1988) Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Develop. Biol. 125, 158–67.Google Scholar
  44. PLAGHKI, L. (1985) Régénération et myogénèse du muscle strié. J. Physiol. 80, 51–110.Google Scholar
  45. ROBERTS, P., MCGEACHIE, J. K., GROUNDS, M. D. & SMITH, E. R. (1989) Initiation and duration of myogenic precursor cell replication in transplants of intact skeletal muscles: an autoradiographic study in mice. Anat. Rec. 224, 1–6.Google Scholar
  46. SCHMALBRUCH, H. (1975) Segmental fibre breakdown and defects of the plasmalemma in diseased human muscles. Acta Neuropathol. 33, 129–41.Google Scholar
  47. SCHMALBRUCH, H. (1976) The morphology of regeneration of skeletal muscles in the rat. Tissue Cell 8, 673–92.Google Scholar
  48. SCHMALBRUCH, H. (1977) Regeneration of Soleus muscles of rat autografted in toto as studied by electron microscopy. Cell Tissue Res. 177, 159–80.Google Scholar
  49. SCHMALBRUCH, H. (1986) Muscle regeneration: fetal myogenesis in a new setting. Bibliotheca Anatomica 29, 126–53.Google Scholar
  50. SCHULTZ, E. (1984) A quantitative study of satellite cells in regenerated Soleus and Extensor Digitorum Longus muscle. Anat. Rec. 208, 501–6.Google Scholar
  51. SCHULTZ, E., JARYSZAK, D. L. & VALLIERE, C. R. (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8, 217–22.Google Scholar
  52. SCHULTZ, E., JARYSZAK, D. L., GIBSON, M. C. & ALBRIGHT, D. J. (1986) Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J. Muscle Res. Cell Motil. 7, 361–7.Google Scholar
  53. SHAFIQ, S. A. & GORYCKI, M. A. (1965) Regeneration in skeletal muscle of mouse: some electron-microscope observations. J. Pathol. Bact. 90, 123–7.Google Scholar
  54. SNOW, M. H. (1977a) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat. Rec. 188, 181–200.Google Scholar
  55. SNOW, M. H. (1977b) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat. Rec. 188, 201–18.Google Scholar
  56. SNOW, M. H. (1978) An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rat. Cell Tissue Res. 186, 535–40.Google Scholar
  57. TERäVäINEN, H. (1970) Satellite cells of striated muscle after compression injury so slight as not to cause degeneration of the muscle fibres. Z. Zellforsch. 103, 320–7.Google Scholar
  58. VON DERMARK, K. & ÖCALAN, M. (1989) Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation 40, 150–7.Google Scholar
  59. VOYTIK, S. L., PRZYBORSKI, M., BADYLAK, S. F. & KONIECZNY, S. F. (1993) Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Develop. Dynamics 198, 214–24.Google Scholar
  60. VRACKO, R. & BENDITT, E. P. (1972) Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J. Cell Biol. 55, 406–19.Google Scholar
  61. WHALEN, R. G., HARRIS, J. B., BUTLER-BROWNE, G. S. & SESODIA, S. (1990) Expression of myosin isoforms during notexin-induced regeneration of rat Soleus muscle. Develop. Biol. 141, 24–40.Google Scholar
  62. YOSHIMURA, N., MURACHI, T., HEATH, R., KAY, J., JASANI, B. & NEWMAN, G. R. (1986) Immunogold electron-microscopic localization of calpain I in skeletal muscles of rats. Cell Tissue Res. 244, 265–70.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Yann Bassaglia
    • 1
  • Jean Gautron
    • 1
  1. 1.MYREM/CRRET, URA 1813Université Paris-Val de MarneCreteil CedexFrance

Personalised recommendations