Biodegradation

, Volume 1, Issue 2–3, pp 79–92 | Cite as

Physiology of aliphatic hydrocarbon-degrading microorganisms

  • Robert J. Watkinson
  • Philip Morgan
Article

Abstract

This paper reviews aspects of the physiology and biochemistry of the microbial biodegradation of alkanes larger than methane, alkenes and alkynes with particular emphasis upon recent developments. Subject areas discussed include: substrate uptake; metabolic pathways for alkenes and straight and branched-chain alkanes; the genetics and regulation of pathways; co-oxidation of aliphatic hydrocarbons; the potential for anaerobic aliphatic hydrocarbon degradation; the potential deployment of aliphatic hydrocarbon-degrading microorganisms in biotechnology.

Key words

aliphatic hydrocarbons alkanes alkenes biodegradation metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas, RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45: 180–209Google Scholar
  2. Bassel, JB & Mortimer, RK (1985) Identification of mutations preventing n-hexadecane uptake among 26 n-alkane nonutilizing mutants of Yarrowia (Saccharomycopsis) lipolytica. Curr Genet 9: 579–586Google Scholar
  3. Benson, S, Fennewald, M, Shapiro, J & Huettner, C (1977) Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations. J Bacteriol 132: 614–621Google Scholar
  4. Bertrand, JC, Caumette, P, Mille, G, Gilewicz, M & Denis, M (1989) Anaerobic biodegradation of hydrocarbons. Sci Prog 73: 333–350Google Scholar
  5. Blasig, R, Mauersberger, S, Riege, P, Schunck, W-H, Jockisch, W, Franke, P & Muller, H-G (1988) Degradation of long-chain n-alkanes by the yeast Candida maltosa. II. Oxidation of n-alkanes and intermediates using microsomal membrane fractions. Appl Microbiol Biotechnol 28: 589–597Google Scholar
  6. Blasig, R, Huth, J, Franke, P, Borneleit, P, Schunck, W-H & Muller, H-G (1989) Degradation of long-chain n-alkanes by the yeast Candida maltosa. III. Effect of solid n-alkanes on cellular fatty acid composition. Appl Microbiol Biotechnol 31: 571–576Google Scholar
  7. de Bont, JAM, Primrose, SB, Collins, MD & Jones, D (1980) Chemical studies on some bacteria which utilise gaseous unsaturated hydrocarbons. J Gen Microbiol 117: 97–102Google Scholar
  8. Britton, LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson, DT (Ed) Microbial Degradation of Organic Compounds (pp 89–129). Marcel Dekker, New YorkGoogle Scholar
  9. Cerniglia, CE, Blevins, WT & Perry, JJ (1976) Microbial oxidation and assimilation of propylene. Appl Environ Microbiol 32: 764–768Google Scholar
  10. Chakrabarty, AM, Chou, G & Gunsalus, IC (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci USA 70: 1137–1140Google Scholar
  11. Cox, RE, Maxwell, JR & Myers, RN (1976) Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum. Lipids 11: 72–76Google Scholar
  12. Eastcott, L, Shiu, WY & Mackay, D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pollut 4: 191–216Google Scholar
  13. Eggink, G, Engel, H, Meijer, WG, Otten, J, Kingma, J & Witholt, B (1988) Alkane utilization in Pseudomonas oleovorans. Structure and function of the regulatory locus alkR. J Biol Chem 263: 13400–13405Google Scholar
  14. Eggink, G, Lageveen, RG, Altenburg, B & Witholt, B (1987a) Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J Biol Chem 262: 17712–17718Google Scholar
  15. Eggink, G, van Lelyveld, PH, Arnberg, A, Arfman, N, Witteveen, C & Witholt, B (1987b) Structure of the Pseudomonas putida alkBAC operon. Identification of transcription and translation products. J Biol Chem 262: 6400–6406Google Scholar
  16. Fennewald, M, Benson, S, Oppici, M & Shapiro, J (1979) Insertion element analysis and mapping of the Pseudomonas plasmid alk region. J Bacteriol 139: 940–952Google Scholar
  17. Fennewald, M & Shapiro, J (1977) Regulatory mutations of the Pseudomonas plasmid alk regulon. J Bacteriol 132: 622–627Google Scholar
  18. Fennewald, M & Shapiro, J (1979) Transposition of Tn7 in Pseuomonas aeruginosa and isolation of alk:: Tn7 mutations. J Bacteriol 139: 264–269Google Scholar
  19. Finnerty, WR (1984) The application of hydrocarbon-utilizing microorganisms for lipid production. AOCS Monogr 11: 199–215Google Scholar
  20. Finnerty, WR & Singer, ME (1985) Membranes of hydrocarbonutilizing microorganisms. In: Ghosh, BK (Ed) Organisation of Prokaryotic Cell Membranes, Volume III (pp 1–44). CRC Press, Boca Raton, FloridaGoogle Scholar
  21. Fukui, S & Tanaka, A (1979) Peroxisimes of alkane- and methanol-grown yeasts: metabolic functions and practical applications. J Appl Biochem 1: 171–201Google Scholar
  22. van Ginkel, CG & de Bont, JAM (1986) Isolation and characterization of alkene-utilizing Xanthobacter spp. Arch Microbiol 145: 403–407Google Scholar
  23. van Ginkel CG, Welten HGJ & de Bont JAM (1987) Oxidation of gaseous and volatile hydrocarbons by selected alkeneutilizing bacteria. Appl Environ Microbiol: 2903–2907Google Scholar
  24. Grund, A, Shapiro, J, Fennewald, M, Bacha, P, Leahy, J, Markbreiter, K, Nieder, M & Toepfer, M (1975) Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol 123: 546–556Google Scholar
  25. Hartmans, S, de Bont, JAM & Harder, W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Rev 63: 235–264Google Scholar
  26. Hommel, R & Kleber, H-P (1984) Oxidation of long-chain alkanes by Acetobacter rancens. Appl Microbiol Biotechnol 19: 110–113Google Scholar
  27. Hommel, R & Ratledge, C (1990) Evidence for two fatty alcohol oxidases in the biosurfactant-producing yeast Candida (Torulopsis) bombicola. FEMS Microbiol Lett 70: 183–186Google Scholar
  28. Kappeli, O & Finnerty, WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140: 707–712Google Scholar
  29. Kemp, GD, Dickinson, FM & Ratledge, C (1988) Inducible long chain alcohol oxidase from alkane-grown Candida tropicalis. Appl Microbiol Biotechnol 29: 370–374Google Scholar
  30. Kennicutt, MC (1988) The effect of biodegradation on crude oil bulk and molecular composition. Oil Chem Pollut 4: 89–112Google Scholar
  31. Kirk, PW & Gordon, AS (1988) Hydrocarbon degradation by filamentous marine higher fungi. Mycologia 80: 776–782Google Scholar
  32. Kok, M, Oldenhuis, R, van der Linden, MPG, Raatjes, P, Kingma, J, van Lelyveld, PH & Witholt, B (1989) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem 264: 5435–5441Google Scholar
  33. Lageveen, RG, Huisman, GW, Preusting, H, Ketelaar, P, Eggink, G & Witholt, B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54: 2924–2932Google Scholar
  34. Lindley, ND, Pedley, JF, Kay, SP & Heydeman, M.T. (1986) The metabolism of yeasts and filamentous fungi which degrade hydrocarbon fuels. Int Biodet 22: 281–287Google Scholar
  35. McKenna, EJ & Kallio, RE (1971) Microbial metabolism of the isoprenoid alkane pristane. Proc Natl Acad Sci USA 68: 1552–1554Google Scholar
  36. Miall, LM (1980) Organic acid production from hydrocarbons. In: Harrison, DEF, Higgins, IJ & Watkinson, RJ (Eds) Hydrocarbons in Biotechnology (pp 25–34). Heyden, LondonGoogle Scholar
  37. Mille, G, Mulyono, M, El Jammel, T & Bertrand, J-C (1988) Effects of oxygen on hydrocarbon degradation studies in vitro in surficial sediments. Estuarine Coastal Shelf Sci 27: 283–295Google Scholar
  38. Miller, RM & Bartha, R (1989) Evidence for liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl Environ Microbiol 55: 269–274Google Scholar
  39. Morgan, P & Watkinson, RJ (1989a) Hydrocarbon degradation in soils and methods for soil biotreatment. CRC Crit Rev Biotechnol 8: 305–333Google Scholar
  40. Morgan, P & Watkonson, RJ (1989b) Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol Rev 63: 277–300Google Scholar
  41. Nakajima, K & Sato, A (1983) Microbial metabolism of isoprenoid alkane pristane. Nippon Nogeikugaku Kaishi 57: 299–305Google Scholar
  42. Nakajima, K, Sato, A, Takahara, Y & Iida, T (1985) Microbial oxidation of isoprenoid alkanes, phytane, norpristane and farnesane. Agric Biol Chem 49: 1493–2002Google Scholar
  43. Nakajima, K, Sato, A, Takahara, Y & Iida, T (1985) Microbial oxidation of isoprenoid alkanes phytane, norpristane and farnesane. Agric Biol Chem 49: 1993–2002Google Scholar
  44. Ng, TK & Hu, WS (1989) Adherence of emulsan-producing Acinetobacter calcoaceticus to hydrophobic liquids. Appl Microbiol Biotechnol 31: 480–485Google Scholar
  45. Nieder, M & Shapiro, J (1975) Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. J Bacteriol 122: 93–98Google Scholar
  46. Oudot, J, Ambles, A, Bourgeouis, S, Gatellier, C & Sebyera, N (1989) Hydrocarbon infiltration and biodegradation in a landfarming experiment. Environ Pollut 59: 17–40Google Scholar
  47. Owen, DJ (1986) Molecular cloning and characterization of sequences from the regulatory cluster of the Pseudomonas plasmid alk system. Mol Gen Genet 203: 64–72Google Scholar
  48. Pfaender, FK & Buckley, EN (1984) Effects of petroleum on microbial communities. In: Atlas, RM (Ed) Petroleum Microbiology (pp 507–536). Macmillan, New YorkGoogle Scholar
  49. Pirnik, M.P. (1977) Microbial oxidation of methyl branched alkanes. CRC Crit Rev Microbiol 5: 413–422Google Scholar
  50. Pirnik, MP, Atlas, RM & Bartha, R (1974) Hydrocarbon metabolism by Brevibacterium erthrogenes: normal and branched alkanes. J Bacteriol 119: 868–878Google Scholar
  51. Ratledge, C (1978) Degradation of aliphatic hydrocarbons. In: Watkinson, RJ (Ed) Developments in Biodegradation of Hydrocarbons (pp 1–46). Applied Science, LondonGoogle Scholar
  52. Ratledge, C (1984) Microbial conversions of alkanes and fatty acids. J Am Oil Chem Soc 61: 447–453Google Scholar
  53. Rehm, HJ, Hortmann, L & Reiff, I (1983) Regulation der fettsaurebildung bei der mikrobiellen alkanoxidation. Acta Biotechnol 3: 279–288Google Scholar
  54. Rehm, HJ & Reiff, I (1982) Regulation der mikrobiellen alkanoxidation mit hinblick auf die produktbildung. Acta Biotechnol 2: 127–138Google Scholar
  55. Rontani, JF & Giusti, G (1986) Study of the biodegradation of poly-branched alkanes by a marine bacterial community. Mar Chem 20: 197–205Google Scholar
  56. Sanglard, D, Chen, C & Loper, JC (1987) Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis. Biochem Biophys Res Comm 144: 251–257Google Scholar
  57. Sanglard, D & Fiechter, A (1989) Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Lett 256: 128–134Google Scholar
  58. Sanglard, D & Loper, JC (1989) Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene 76: 121–136Google Scholar
  59. Schink, B (1985a) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Ecol 31: 69–77Google Scholar
  60. Schink, B (1985b) Fermentation of acetylene by an obligate anaerobe Pelobacter acetylenicus sp. nov.. Arch Microbiol 142: 295–301Google Scholar
  61. Schink, B (1989) Anaerober abbau von Kohlenwasserstoffen. Erdol Kohle Erdgas 42: 116–118Google Scholar
  62. Schunck, W-H, Kargel, E, Gross, B, Wiedmann, B, Mauersberger, S, Kopke, K, Kiessling, U, Strauss, M, Gaestel, M & Muller, H-G (1989) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Comm 161: 843–850Google Scholar
  63. Scott, CCL & Finnerty, WR (1976a) A comparative analysis of the ultrastructure of hydrocarbon-oxidizing microorganisms. J Gen Microbiol 94: 342–350Google Scholar
  64. Scott, CCL & Finnerty, WR (1976b) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter sp. HO1-N. J Bacteriol 127: 481–489Google Scholar
  65. Shennan, JL (1984) Hydrocarbons as substrates in industrial fermentations. In: Atlas, RM (Ed) Petroleum Microbiology (pp 643–683). Macmillan, New YorkGoogle Scholar
  66. Singer, ME & Finnerty, WR (1984a) Microbial metabolism of straight-chain and branched alkanes. In: Atlas, RM (Ed) Petroleum Microbiology (pp 1–59). Macmillan, New YorkGoogle Scholar
  67. Singer, ME & Finnerty, WR (1984b) Genetics of hydrocarbon-utilizing microorganisms. In: Atlas, RM (Ed) Petroleum Microbiology (pp 299–354). Macmillan, New YorkGoogle Scholar
  68. de Smet, M-J, Kingma, J, Wijnberg, H & Witholt, B (1983a) Pseudomonas oleovorans as a tool in bioconversions of hydrocarbons: growth, morphology and conversion characteristics in different two-phase systems. Enzyme Microb Technol 5: 352–360Google Scholar
  69. de Smet, M-J, Eggink, G, Witholt, B, Kingma, J & Wijnberg, H (1983b) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154: 870–878Google Scholar
  70. Sunairi, M, Suzuki, R, Takagi, M & Yano, K (1988) Self-cloning of genes for n-alkane assimilation from Candida maltosa. Agric Biol Chem 52: 577–579Google Scholar
  71. Takagi, M, Ohkuma, M, Kobayashi, N, Watanabe, M & Yano, J (1989) Purification of cytochrome P-450alk from n-alkane-grown cells of Candida maltosa and cloning and nucleotide sequencing of the encoding gene. Agric Biol Chem 53: 2217–2226Google Scholar
  72. de Vries, GM, Kues, U & Stahl, U (1990) Physiology and genetics of methylotrophic bacteria. FEMS Microbiol Rev 75: 57–101Google Scholar
  73. Wakeham, SG, Canuel, EA & Doering, PH (1986) Behavior of aliphatic hydrocarbons in coastal seawater: mesocosm experiments with [14C]octadecane and [14C]decane. Environ Sci Technol 20: 574–580Google Scholar
  74. Watkinson, RJ (1980) Interaction of microorganisms with hydrocarbons. In: Harrison, DEF, Higgins, IJ & Watkinson, RJ (Eds) Hydrocarbons in Biotechnology (pp 11–24). Heyden, LondonGoogle Scholar
  75. Weijers, CGAM, van Ginkel, CG & de Bont, JAM (1988a) Enantiomeric composition of lower epoxyalkanes produced by methane-, alkane-, and alkene-utilizing bacteria. Enzyme Microb Technol 10: 214–218Google Scholar
  76. Weijers, CGAM, Leenen, EJTM, Klijn, N & de Bont, JAM (1988b) Microbial formation of chiral epoxyalkanes. Med Fac Landbouww Rijksuniv Gent 53: 2089–2095Google Scholar
  77. Weijers, CGAM, de Haan, A & de Bont, JAM (1988c) Microbial production and metabolism of epoxides. Microbiol Sci 5: 156–159Google Scholar
  78. Witholt, B, de Smet, M-J, Kingma, J, van Beilen, JB, Kok, M, Lageveen, RG & Eggink, G (1990) Bioconversions of aliphatic hydrocarbons by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnl 8: 46–52Google Scholar
  79. Woods, NR & Murrell, JC (1989) The metabolism of propane in Rhodococcus rhodochrous PNKb1. J Gen Microbiol 135: 2335–2344Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Robert J. Watkinson
    • 1
  • Philip Morgan
    • 1
  1. 1.Sittingbourne Research CentreShell Research Ltd.SittingbourneUK

Personalised recommendations