Advertisement

Genetica

, Volume 78, Issue 1, pp 3–12 | Cite as

Comparative study of G- and C-banded chromosomes of five species of Microtidae

  • M. Burgos
  • R. Jiménez
  • R. Diaz de la Guardia
Article

Abstract

G-banded karyotypes were compared in the following species of Microtidae: Microtus nivalis; M. cabrerae; M. arvalis and Arvicola sapidus. Previous observations on A. sapidus and A. terrestris (Díaz de la Guardia & Pretel, Caryologia 32: 183–189, 1979) were also incorporated in this study. The results show that Robertsonian translocations and pericentric inversions are common mechanisms involved in the karyotypic evolution of this group. Interspecific differences in C-banding patterns were also analyzed. Using the karyograph method (Imai et al., Am. Nat. 121: 477–488, 1983), the evolutionary distances of the karyotypes were estimated, and an attempt was made to establish a presumptive phylogenetic tree.

Keywords

Phylogenetic Tree Common Mechanism Evolutionary Distance Interspecific Difference Pericentric Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, K., Tagawa, T. & Uchida, T. A., 1980. The C-banding pattern of 6 Japanese species of Vespertilionine bats (Mammalia: Chiroptera). Experientia 36: 653–654.Google Scholar
  2. Baverstock, P. R., Gelder, D. & Jahnke, A., 1982. Cytogenetic studies of the Australian rodent, Uromys caudimaculatus, a species showing extensive heterochromatin variation. Chromosome 84: 517–533.Google Scholar
  3. Benazzou, T., Viegas-Péquignot, E., Petter, F. & Dutrillaux, B., 1982a. Phyogénie chromosomique de quatre espèces de Meriones (Rongeurs, Gerbillidae). Ann. Génét. 25: 19–24.Google Scholar
  4. Benazzou, T., Viegas-Péquignot, E., Petter, F. & Dutrillaux, B., 1982b. Phylogénie chromosomique des Gerbillidae. II Etude de six Meriones, de Taterillus gracilis et de Gerbillus titonis. Ann. Génét. 25: 212–217.Google Scholar
  5. Bianchi, N. O. & Merani, S., 1984. Cytogenetics of South American Akodont rodents (Cricetidae). X. Karyological distances at generic and intergeneric levels. J. Mammal. 65: 206–219.Google Scholar
  6. Buckland, R. A. & Evans, H. J., 1978. Cytogenetic aspects of phylogeny in the Bovidae. II. C-banding. Cytogenet. Cell Genet. 21: 64–71.Google Scholar
  7. Capanna, E., 1982. Robertsonian numerical variation in animal speciation: Mus musculus an emblematic model. In: C.Barigozzi, ed. Mechanisms of speciation (Alan R. Liss, New York).Google Scholar
  8. Chaline, J. & Matthey, R., 1971. Hypothèses relatives à la formule chromosomique d'Allophaiomys pliocaenicus (Rodentia, Arvicolidae) et à la diversification de cette espèce. C.R. Acad. Sc. Paris 272: 1071–1074.Google Scholar
  9. Dev, V. J., Miller, D. A. & Miller, O. J., 1973. Chromosome markers in Mus musculus: strain differences in C-banding. Genetics 75: 663–670.Google Scholar
  10. Diaz de la Guardia, R. & Pretel, A., 1979. Comparative study of the karyotypes of two species of water vole: Arvicola sapidus and Arvicola terrestris (Rodentia, Microtinae). Caryologia 32: 183–189.Google Scholar
  11. Diaz de la Guardia, R., Pascual, L. & Orozco, J. C., 1979. The karyotype of Microtus cabrerae Thomas, another species with giant sex chromosomes. Experientia 35: 741.Google Scholar
  12. Diaz de la Guardia, R., Burgos, M. & Jiménez, R., 1981. About the karyotype of Microtus nivalis Martins (Rodentia, Microtinae). Caryologia 34: 377–383.Google Scholar
  13. Dutrillaux, B., Couturier, J. & Viegas-Péquignot, E., 1981. Chromosomal evolution in primates. In “Chromosomes Today” Vol. 7. (Proc. 7th Int. Chromosome Conference, Oxford 26–31 August 1980) (Ed. by M. D.Bennett, M.Bobrow & G.Hewitt). George Allen and Unwin, London, pp 176–191.Google Scholar
  14. Forehjt, J., 1972. Giemsa specific centromeric heterochromatin in three inbred mouse strains. Folia biolog. 18: 213–215.Google Scholar
  15. Fretias, T. O. R., Matevi, M. S., Oliveira, L. F. B., Souza, M. J., Yonenaga-Yasuda, Y. & Salvano, F. M., 1983. Chromosome relationships in three representatives of the genus Holochilus (Rodentia, Cricetidae) from Brazil. Genetic 61: 13–20.Google Scholar
  16. Gamperl, R., 1982. Chromosomal evolution in the genus Clethrionomys. Genetica 57: 193–197.Google Scholar
  17. Gamperl, R. & Vistorin, G., 1980. Comparative study of G-and C-banded chromosomes of Gerbillus campestris and Meriones unguiculatus (Rodentia, Gerbillinae). Genetica 52: 93–97.Google Scholar
  18. Gileva, E. A., Bolshakov, V. N., Chernousova, N. F. & Mamina, V. P., 1982. Cytogenetical differentiation of forms in the group of Pamir (Microtus juldaschi) and Carruther's (M carruthersi) voles (Mammalia, Microtinae) Zool. Zh. 61: 912–922.Google Scholar
  19. Gropp, A., Winking, H., Redi, C., Capanna, E., Britton-Davidian, J. & Noack, G., 1982. Robertsonian karyotype variation in wild house mice from Rhaeto-Lombardia. Cytogenet. Cell Genet. 34: 67–77.Google Scholar
  20. Hsu, T. C. & Benirschke, K., 1970. An atlas of mammalian chromosomes, vol. 4, Berlin; Springer-Verlag.Google Scholar
  21. Hsu, T. C., Markvong, A. & Marshall, J. T., 1978. G-band patterns of six species of mice belonging to subgenus Mus. Cytogenet. Cell Genet. 20: 304–307.Google Scholar
  22. Imai, H., Maruyama, T. & Crozier, R. H., 1983. Rates of mammalian karyotype evolution by the karyograph method. Am. Nat. 121: 477–488.Google Scholar
  23. Jüdes, U., 1981. G- and C-band karyotypes of the harvest mouse, Micromys minutus. Genetica 54: 237–239.Google Scholar
  24. King, M. & John, B., 1979. Regularities and restrictions governing C-band variation in acridoid grasshoppers. Chromosoma 76: 123–150.Google Scholar
  25. Král, B., Zima, J., Herzig-Straochi, B. & Sterba, O., 1979. Karyotypes of certain small mammals from Austria. Folia zool. 28: 5–11.Google Scholar
  26. Lee, M. R. & Elder, F. F. B., 1980. Yeast stimulation of bone marrow mitosis for cytogenetic investigations. Cytogenet. Cell. Genet. 26: 36–40.Google Scholar
  27. Mandahl, N. & Fredga, K., 1975. Q-, G- and C-band patterns of mink chromosomes. Hereditas 81: 211–220.Google Scholar
  28. Mandahl, N. & Fredga, K., 1980. A comparative chromosome study by means of G- C- and NOR-bandings of the weasel, the pygmy weasel and the stoat (Mustela, Carnivora, Mammalia). Hereditas 93: 75–83.Google Scholar
  29. Matthey, R., 1957. Cytologie comparée, systématique et phylogénie des Microtinae (Rodentia, Muridae). Rev. suisse Zool. 64: 39.Google Scholar
  30. Matthey, R., 1973. The chromosome formulae of eutherian mammals. In: Cytotaxonomy and vertebrate evolution, Ed. A. B.Chiarelli & F.Capanna. Academic Press, London and New York.Google Scholar
  31. Miklos, G. L. G., Willcocks, D. A. & Baverstock, P. R., 1980. Restriction endonuclease and molecular analysis of three bat genomes with special reference to chromosome rearrangement and speciation problems. Chromosoma 76: 339–363.Google Scholar
  32. Nadler, C. F., Lyapunova, E. A., Hoffmann, R. S., Vorontsov, N. N., Shaitarova, L. L. & Borisov, Y. M., 1984. Chromosomal evolution in holarctic ground squirrels (Spermophilus). Z. Säugetierkd 4(2): 78–90.Google Scholar
  33. Orlov, V. N. & Malygin, V. M., 1969. Two forms of the 46-chromosome Microtus arvalis Pall. In: N. N.Vorontsov, ed. The mammals—evolution, karyology, taxonomy, fauna. Acad. Sc. U.S.S.R., Novosibirsk: pp. 143–144.Google Scholar
  34. Pathak, S., Hsu, T. C. & Arrighi, F. E., 1973. Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotype evolution. Cytogenet. Cell Genet. 12: 313–326.Google Scholar
  35. Patton, J. L. & Sherwood, S. W., 1982. Genome evolution in pocket gophers (Genus Thomomys). I. Heterochromatin variation and speciation potential. Chromosoma 85: 149–162.Google Scholar
  36. Raicu, P., Kirillova, M. & Hamar, M., 1969. A new chromosomal sex-determining mechanism in Microtus arvalis Pallas. Genetica 40: 97–102.Google Scholar
  37. Savic, I., Soldatovic, B. & Dulic, B., 1971. On the karyotype of the species Microtus arvalis Pallas, 1779 (Rodentia, Microtidae). From Vojvodina Arhiv Biolokih nauka 3: 27–28.Google Scholar
  38. Sen, S. & Sharma, T., 1983. Role of constitutive heterochromatin in evolutionary divergence: results of chromosome banding and condensation inhibition studies in Mus musculus, Mus booduga and Mus dunni. Evolution 37(3): 628–636.Google Scholar
  39. Seabright, M., 971. A rapid banding technique for human chromosomes. Lancet 2: 971–972.Google Scholar
  40. Sumner, A. T., Evans, H. J. & Buckland, R., 1971. New technique for distinguishing between human chromosomes. Nature New Biol. 232: 31–32.Google Scholar
  41. Sumner, A. T., 1972. A simple technique for demonstrating centromeric heterochromatin. Expl Cell Res. 75: 304–306.Google Scholar
  42. Viegas-Péquignot, E., Benazzou, T., Dutrillaux, B. & Petter, F., 1982. Complex evolution of sex chromosomes in Gerbillidae (Rodentia). Cytogenet. Cell Genet. 34: 158–167.Google Scholar
  43. Wurster-Hill, D. H. & Centerwall, W. R., 1982. The interrelationships of chromosome banding patterns in canids, mustelids, hyena and felids. Cytogenet. Cell Genet. 34: 178–192.Google Scholar
  44. Yosida, T. H. & Sagai, T., 1975. Variation of C-bands in the chromosomes of several subspecies of Rattus rattus. Chromosoma 50: 283–300.Google Scholar
  45. Zima, J. & Kral, B., 1984. Karyotypes of European Mammals II. Acta Sc. Nat. Brno 18(8): 13–29.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. Burgos
    • 1
  • R. Jiménez
    • 1
  • R. Diaz de la Guardia
    • 1
  1. 1.Departmento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations