Journal of Atmospheric Chemistry

, Volume 13, Issue 3, pp 265–288 | Cite as

A modified profile method for determining the vertical fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer

  • Gerhard Kramm
  • Hans Müller
  • David Fowler
  • Klaus D. Höfken
  • Franz X. Meixner
  • Eberhard Schaller
Article

Abstract

A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with ‘group’ concentrations c1=[NO]+[NO2]+[HNO3], c2=[NO2]+[O3]+3/2·[HNO3], and c3=[NO]−[O3]−1/2·[HNO3]. The fluxes of the ‘individual’ species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (‘decoding’ method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.

The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989).

Key words

Biosphere-atmosphere exchange dry deposition tlux-gradient relationships HNO3 fluxes NO fluxes NO2 fluxes ozone fluxes resistance approach turbulent transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F.Jr., Kerr, J. A., and Troe, J.: 1989, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III, J. Phys. Chem. Ref. Data 18 (2), 881–1097.Google Scholar
  2. Baldocchi, D. D., Hicks, B. B., and Meyers, T. P.: 1988, Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology 69, 1331–1340.Google Scholar
  3. Baulch, D. L., Cox, R. A., Hampson, R. F.Jr., Kerr, J. A., Troe, J., and Watson R. T.: 1984, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II, J. Phys. Chem. Ref. Data 13(4), 1259–1380.Google Scholar
  4. Biscoe, P. V., Clark, J. A., Gregson, K., MeGowan, M., Monteith, J. L., and Scott, R. K.: 1975, Barley and its environment, J. Appl. Ecol. 12, 227–257.Google Scholar
  5. Brost, R. A., Delany, A. C., and Huebert, B. J.: 1988, Numerical modeling of concentrations and fluxes of HNO3, NH3, and NH4NO3 near the surface, J. Geophys. Res. 93, 7137–7152.Google Scholar
  6. Businger, J. A.: 1973, Turbulent transfer in the atmospheric surface layer, in D. A. Haugen (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, pp. 67–100.Google Scholar
  7. Businger, J. A.: 1986, Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques, J. Appl. Meteorol. 25, 1100–1124.Google Scholar
  8. Chamberlain, A. C.: 1961, Aspects of travel and deposition of aerosol and vapour clouds, AERE Report HP/R 1261 (RP/14), Harwell.Google Scholar
  9. Delany, A. C., Fitzjarrald, D. R., Lenschow, D. H., Pearson, R.Jr., Wendel, G. J., and Woodruff, B.: 1986, Direct measurements of nitrogen oxides and ozone fluxes over grassland, J. Atmos. Chem. 4, 429–444.Google Scholar
  10. Denmead, O. T. and Bradley, E. F.: 1985, Flux-gradient relationships in a forest canopy, in B. A. Hutchison and B. B. Hicks (eds), The Forest-Atmosphere Interaction, D. Reidel, Dordrecht, Boston, Lancaster, pp. 421–442.Google Scholar
  11. Dollard, G. J., Jones, B. M. R., and Davies, T. J.: 1990, Dry deposition of HNO3 and PAN, AERE Report R13780, Harwell.Google Scholar
  12. Droppo, J. G.Jr.: 1985, Concurrent measurements of ozone dry deposition using eddy correlation and profile flux methods, J. Geophys. Res. 90(D1), 2111–2118.Google Scholar
  13. Duyzer, J. H., Meyer, G. M., and van Aalst, R. M.: 1983, Measurement of dry deposition velocities of NO, NO2 and O3 and the influence of chemical reactions, Atmos. Environ. 17, 2117–2120.Google Scholar
  14. Dyer, A. J. and Hicks, B. B.: 1970, Flux-gradient relationships in the constant flux layer, Quart. J. R. Meteorol. Soc. 96, 715–721.Google Scholar
  15. Finlayson-Pitts, B. J. and Pitts, J. N.Jr.: 1986, Atmospheric Chemistry, Wiley, Chichester, New York, Brisbane, Toronto, Singapore, p. 1098.Google Scholar
  16. Fitzjarrald, D. R. and Lenschow, D. H.: 1983, Mean concentration and flux profiles for chemically reactive species in the atmospheric surface layer, Atmos. Environ. 17, 2505–2512.Google Scholar
  17. Fowler, D.: 1978, Dry deposition of SO2 on agricultural crops, Atmos. Environ. 12, 369–373.Google Scholar
  18. Garland, J. A., Clough, W. S., and Fowler, D.: 1973, Deposition of sulphur dioxide on grass, Nature 242, 256–257.Google Scholar
  19. Garland, J. A.: 1978, Dry and wet removal of sulphur from the atmosphere, Atmos. Environ. 12, 349–362.Google Scholar
  20. Gear, C. W.: 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentlee-Hall, Englewood Cliffs, New Jersey, p. 253.Google Scholar
  21. Georgii, H.-W.: 1985, Chemische Reaktionen von Gasen und Aerosolen in Regen- und Wolkentropfen und ihre feuchte und trockene Deposition, in K. H. Becker and J. Löbel (eds), Atmosphärische Spurenstoffe und ihre physikalisch-chemisches Verhalten, pp. 129–152.Google Scholar
  22. Hampson, R. F. and Garvin, D.: 1978, Reaction rate and photochemical data for atmospheric chemistry —1977, Special Publication 513, National Bureau of Standards.Google Scholar
  23. Hargreaves, K. J., Fowler, D., Storeton-West, R. L., and Duyzer, J. H.: 1990, The exchange of nitric oxide, nitrogen dioxide and ozone between pasture and the atmosphere (submitted for publication).Google Scholar
  24. Harrison, R. M., Rapsomanikis, S., and Turnbull, A.: 1989, Land-surface exchange in a chemicallyreactive system; surface fluxes of HNO3, HCl and NH3, Atmos. Environ. 23, 1795–1800.Google Scholar
  25. Herbert, F. and Kramm, G.: 1981, A diseussion of approximate relations for transfer and deposition of trace constituents in the ABL, in F. Herbert (ed.), Atmospheric Trace Constitutents, Friedr. Vieweg & Sohn, Braunschweig, Wiesbaden, pp. 27–40.Google Scholar
  26. Hicks, B. B., Wesely, M. L., Coulter, R. L., Hart, R. L., Durham, J. L., Speer, R., and Stedman, D. H.: 1986, An experimental study of sulfur and NOx fluxes over grassland, Boundary-Layer Meteorol. 34, 103–121.Google Scholar
  27. Hicks, B. B. and Matt, D. R.: 1988, Combining biology, chemistry, and meteorology in modeling and measuring dry deposition, J. Atmos. Chem. 6, 117–131.Google Scholar
  28. Höfken, K. D., Meixner, F., Müller, K. P., and Ehhalt, D. H.: 1986, Untersuchungen zur trockenen Deposition und Emission von atmosphärischem NO, NO2 und HNO3 an natürlichen Oberflächen, Berichte der Kfa Jülich, No. 2054.Google Scholar
  29. Högström, U.: 1967, Turbulent water vapour transfer at different stability conditions, Phys. of Fluids 10 (Supplement), 247–254.Google Scholar
  30. Huebert, B. J. and Robert, C. H.: 1985, The dry deposition of nitric acid to grass, J. Geophys. Res. 90(D1), 2085–2090.Google Scholar
  31. Kramm, G.: 1989a, A numerical method for determining the dry deposition of atmospheric trace gases, Boundary-Layer Meteorol. 48, 157–176.Google Scholar
  32. Kramm, G.: 1989b, The estimation of the surface layer parameters from wind velocity, temperature and humidity profiles by least squares methods, Boundary-Layer Meteorol, 48, 315–327.Google Scholar
  33. Kramm, G.: 1991a, Numerical investigation of the dry deposition and exhalation of reactive trace gases (submitted for publication in the Handbook of Environmental Chemistry).Google Scholar
  34. Kramm, G.: 1991b, Development and application of diagnostic models of the atmospheric boundary layer for determining the dry deposition of trace gases, BIATEX Report 1990.Google Scholar
  35. Lenschow, D. H.: 1982, Reactive trace species in the boundary layer from a micrometeorological perspective, J. Meteorol. Soc. Japan 60, 472–480.Google Scholar
  36. Lenschow, D. H. and Delany, A. C.: 1987, An analytic formulation for NO and NO2 flux profiles in the atmospheric surface layer, J. Atmos. Chem. 5, 301–309.Google Scholar
  37. McRae, G. J., Goodin, W. R., and Seinfeld, J. H.: 1982, Mathematical modeling of photochemical air pollution, Environmental Quality Laboratory, report No. 18, California Institute of Technology, Pasadena, California.Google Scholar
  38. McRae, G. J. and Russell, A. G.: 1984, Dry deposition of nitrogen-containing species, in B. B. Hicks (ed.), Deposition Both Wet and Dry (Acid precipitation series-Vol. 4), Butterworth, Boston, London.Google Scholar
  39. Meixner, F. X., Müller, K. P., Aheimer, G., and Höfken, K.-D.: 1985, Measurements of gaseous nitric acid and particulate nitrate, in F. A. A. M. de Leeuw and N. D. van Egmond (eds), Proceedings of the COST Action 611 Meeting ‘Pollutant Cycles and Transport: Modelling and Field Experiments’, RVIM Bilthoven, The Netherlands, pp. 103–119.Google Scholar
  40. Meixner, F. X., Böswald, F., Eiblmeier, K., Ludwig, J., Müller, H., and Nestlen, M.: 1990, Measurement of vertical fluxes of nitrogen oxides, BIATEX Report 1989.Google Scholar
  41. Müller, H., Meixner, F., Kramm, G., Fowler, D., Dollard, G. J., and Possanzini, M.: 1990, Determination of HNO3 dry deposition by modified Bowen ratio and aerodynamic profile techniques (submitted for publication).Google Scholar
  42. Molina, L. T. and Molina, M. J.: 1986, Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range, J. Geophys. Res. 91(D13), 14,501–14,508.Google Scholar
  43. O'Dell, R. A., Taheri, M., and Kabel, R. L.: 1977, A model for uptake of pollutants by vegetation, J. Air Pollut. Control Assoc. 27, 1104–1109.Google Scholar
  44. Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence, Wiley, New York, Chichester, Brisbane, Toronto, Singapore, p. 397.Google Scholar
  45. Paulson, C. A.: 1970, The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteorol. 9, 857–861.Google Scholar
  46. Peterson, J. T.: 1976, Calculated aetinic fluxes (290–700 nm) for air pollution photochemistry applications, Environmental Protection Agency, EPA report No. 600/4-76-025.Google Scholar
  47. Schneider, W., Moortgat, G. K., Tyndall, G. S., and Burrows, J. P.: 1987, Absorption cross sections of NO2 in the UV and visible region (200–700 nm) at 298 K, J. Photochem. Photobiol. A40, 195–217.Google Scholar
  48. Schurath, U.: 1985, Chemische Reaktionen von SO2, NOx und organischen Verbindungen, in K. H. Becker and J. Löbel (eds), Atmosphärische Spurenstoffe und ihr physikalisch-chemisches Verhalten, pp. 59–76.Google Scholar
  49. Schurath, U., Henrich, K., Lippmann, H., and Wendler, W.: 1983, Untersuchungen zur Entwicklung eines chemischen Reaktionsmodells atmosphärischer Spurengas-Umsetzungen (Teil I), Umweltforschungsplan des BMI, Luftreinhaltung, Forschungsbericht 81-104 02 511/02.Google Scholar
  50. Swinbank, W. C. and Dyer, A. J.: 1967, An experimental study in micrometeorology, Quart. J. R. Meteorol. Soc. 93, 494–500.Google Scholar
  51. Treshow, M. and Anderson, F. K.: 1989, Plant Stress from Air Pollution, Wiley, Chichester, New York, Brisbane, Toronto, Singapore, p. 283.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Gerhard Kramm
    • 1
  • Hans Müller
    • 1
  • David Fowler
    • 2
  • Klaus D. Höfken
    • 3
  • Franz X. Meixner
    • 1
  • Eberhard Schaller
    • 1
  1. 1.Fraunhofer-Institut für Atmosphärische Umweltforschung (IFU)Garmisch-PartenkirchenGermany
  2. 2.Institute of Terrestrial Ecology (ITE)PenicuikScotland, U.K.
  3. 3.GST-Forschungszentrum für Umwelt und GesundheitProjektträger für Umwell-und KlimaforschungMunchenGermany

Personalised recommendations