Advertisement

Journal of Atmospheric Chemistry

, Volume 13, Issue 3, pp 225–263 | Cite as

A global three-dimensional model of the tropospheric sulfur cycle

  • J. Langner
  • H. Rodhe
Article

Abstract

The tropospheric part of the atmospheric sulfur cycle has been simulated in a global three-dimensional model. The model treats the emission, transport, chemistry, and removal processes for three sulfur components; DMS (dimethyl sulfide), SO2 and SO42− (sulfate). These processes are resolved using an Eulerian transport model, the MOGUNTIA model, with a horizontal resolution of 10° longitude by 10° latitude and with 10 layers in the vertical between the surface and 100 hPa. Advection takes place by climatological monthly mean winds. Transport processes occurring on smaller space and time scales are parameterized as eddy diffusion except for transport in deep convective clouds which is treated separately. The simulations are broadly consistent with observations of concentrations in air and precipitation in and over polluted regions in Europe and North America. Oxidation of DMS by OH radicals together with a global emission of 16 Tg DMS-S yr−1 from the oceans result in DMS concentrations consistent with observations in the marine boundary layer. The average turn-over times were estimated to be 3, 1.2–1.8, and 3.2–6.1 days for DMS, SO2, and SO42− respectively.

Key words

Sulfur DMS SO2 sulfate global models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M. O., 1990, Ocean-atmosphere interactions in the global biogeochemical sulfur cycle, Marine Chem. 30, 1–29.Google Scholar
  2. Andreae, M. O. and Andreae, T. W., 1988, The cycle of biogenic sulfur compounds over the Amazon Basin, 1, Dry season, J. Geophys. Res. 93, 1487–1497.Google Scholar
  3. Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harriss, R. C., Hill, G. F., Jacob, D. J., Pereirea, M. C., Sachse, G. W., Setzer, A. W., Silva Dias, P. L., Talbot, R. W., Torres, A. L., and Wofsy, S. C., 1988, Biomass burning emission and associated haze layers over Amazonia, J. Geophys. Res. 93, 1509–1527.Google Scholar
  4. Andreae, M. O., Ferek, R. J., Bermond, F., Byrd, K. P., Engstrom, R. T., Hardin, S., Houmere, P. D., Le Marrec, F., Raemdonck, H., and Chatfield, R. B., 1985, Dimethyl sulfide in the marine atmosphere, J. Geophys. Res. 90, 12891–12901.Google Scholar
  5. Andreae, M. O. and Raemdonck, H., 1983, Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view, Science 221, 744–747.Google Scholar
  6. Austin, P. M. and Houze, R. A., 1973, A technique for computing vertical transport by precipitating cumuli, J. Atmos. Sci. 30, 1100–1111.Google Scholar
  7. Ayers, G. P., Ivey, J. P., and Gillet, R. W., 1991, Coherence between seasonal cycles of dimethylsulfide, methanesulfonate and sulfate in marine air, Nature 349, 404–406.Google Scholar
  8. Ayers, G. P. and Ramsdale, S. L., 1988, Wet deposition of excess sulfate at Macquarie Island, 54°S, J. Atmos. Chem. 7, 317–323.Google Scholar
  9. Barnes, I., Becker, H., Martin, D., Carlier, P., Mouvier, G., Jourdain, J. L., Laverdet, G., and Le Bras, G., 1989, Impact of halogen oxides on dimethyl sulfide oxidation in the marine atmosphere, in E. S. Saltzmann and W. J. Cooper (eds.), Biogenic Sulfur in the Environment, American Chemical Society, Washington, DC, pp. 464–475.Google Scholar
  10. Barrie, L. A. and Hales, J. M., 1984, The spatial distributions of precipitation acidity and major ion wet deposition in North America during 1980, Tellus 36B, 333–355.Google Scholar
  11. Barrie, L. A. and Hoff, R. M., 1985, Five years of air chemistry observations in the Canadian Aretic, Atmos. Environ. 19, 1995–2010.Google Scholar
  12. Bates, T. S., Cline, J. D., Gammon, R. H., and Kelly-Hansen, S. R., 1987, Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere, Geophys. Res. 92, 2930–2938.Google Scholar
  13. Baulch, D. L., Cox, R. A., Hampson, R. F., KerrJr., J. A., Troe, J., and Watson, R. T., 1984, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II, J. Phys. Chem. Ref. Data 13, 1259–1380.Google Scholar
  14. Berresheim, H., 1987, Biogenic sulfur emissions from the Subantarctic and Antaretic oceans, J. Geophys. Res. 92, 13245–13262.Google Scholar
  15. Berresheim, H., Andreae, M. O., Ayers, G. P., Gillett, R. W., Merril, J. T., Davis, V. J., and Chameides, W. L., 1990, Alrborne measurements of dimethylsulfide, sulfur dioxide, and aerosol ions over the Southern Ocean south of Australia, J. Atmos. Chem. 10, 341–370.Google Scholar
  16. Boatman, J. F., Wellman, D. L., Van Valin, C. C., Gunter, R. L., Ray, J. D., Sievering, H., Kim, Y., Wilkinson, S. W., and Luria, M., 1989, Airborne sampling of selected trace chemicals above the central United States, J. Geophys. Res. 94, 5081–5093.Google Scholar
  17. Bolin, B. and Charlson, R. J., 1976, On the role of the tropospheric sulfur cycle in the shortwave radiative climate of the earth, Ambio 5, 47–54.Google Scholar
  18. Bonsang, B., Nguyen, B. C., Gaudry, A., and Lambert, G., 1980, Sulfate enrichment in marine aerosols owing to biogenic gaseous sulfur compounds, J. Geophys. Res. 85, 7410–7416.Google Scholar
  19. Brost, R. A., Chatfield, R. B., Greenberg, J. P., Haagenson, P. L., Heikes, B. G., Madronich, S., Ridley, B. A., and Zimmerman, P. R., 1988, Three-dimensional modeling of transport of chemical species from continents to the Atlantic Ocean, Tellus 40B, 358–379.Google Scholar
  20. Buijsman, E., Jonker, P. J., Asman, W. A. H., and Ridder, T. B., 1991, Chemical composition of precipitation collected on a weathership on the North Atlantic, Atmos Environ. 25A, 873–883.Google Scholar
  21. Calvert, J. G., Su, F., Bottenheim, J. W., and Strausz, O. P., 1978, Mechanism of the homogeneous oxidation of sulfur dioxide in the troposphere, Atmos. Environ 12, 197–226.Google Scholar
  22. Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J., 1987, A three-dimensional Eulerian acid deposition model: Physical concepts and model formulation, J. Geophys. Res. 92, 14681–14700.Google Scholar
  23. Charlson, R. J., Langner, J., and Rodhe, H., 1990, Sulphate aerosol and climate, Nature 348, 22.Google Scholar
  24. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G., 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature 326, 655–661.Google Scholar
  25. Carmichael, G. R. and Peters, L. K., 1984, An Eulerian transport/transformation/removal model for SO2 and sulfate-I. Model development, Atmos. Environ. 18, 937–951.Google Scholar
  26. Chatfield, R. B. and Crutzen, P.J., 1984, Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors, J. Geophys. Res. 89, 7111–7132.Google Scholar
  27. Chatfield, R. B. and Crutzen, P. J., 1990, Are there interactions of iodine and sulfur species in marine air photochemistry?, J. Geophys. Res. 95, 22319–22341.Google Scholar
  28. Crutzen, P. J. and Zimmermann, P. H., 1991, The changing photochemistry of the troposphere, Tellus 43 AB, 136–151.Google Scholar
  29. Daykin, E. P. and Wine, P. H., 1990, Rate of reaction of IO radieals with dimethylsulfide, J. Geophys. Res. 95, 18547–18553.Google Scholar
  30. Deister, U., Neeb, R., Helas, G., and Warneck, P., 1986, Temperature dependence of the equilibrium CH2(OH)2+HSO3 =CH2(OH)SO3 +H2O in aqueous solution, J. Phys. Chem. 90, 3213–3217.Google Scholar
  31. Delmas, R. and Servant, J., 1982, The origins of sulfur compounds in the atmosphere of a zone of high productivity (Gulf of Guinea), J. Geophys. Res. 87, 10019–10026.Google Scholar
  32. Eliassen, A., 1978, The OECD study of long range transport of air pollutants: Long range transport modelling, Atmos. Environ. 12, 479–487.Google Scholar
  33. EMEP 1984, Summary report from the chemical co-ordinating centre for the second phase of EMEP, EMEP/CCC-Report 2–84, Norwegian Institute for Air Research, Lillestrøm, Norway, 120. pp.Google Scholar
  34. Erickson, D. J., Ghan, S. J., and Penner, J. E., 1990, Global ocean-to-atmosphere dimethyl sulfide flux, J. Geophys. Res. 95, 7543–7552.Google Scholar
  35. Erickson, D. J., Walton, J. J., Ghan, S. J., and Penner, J. E., 1991, Three-dimensional modeling of the global atmospheric sulfur cycle: A first step, Atmos. Environ. in press.Google Scholar
  36. Feichter, J. and Crutzen, P. J., 1990, Parameterization of deep cumulus convection in a global trace transport model, and its evaluation with 222Rn, Tellus 42B, 100–117.Google Scholar
  37. Flyger, H., Heidam, N. Z., Hansen, K., Megaw, W. J., Walther, E. G., and Hogan, A. W., 1976, The background level of the summer tropospheric aerosol, sulphur dioxide and ozone over Greenland and the North Atlantic ocean, J. Aerosol. Sci. 7, 103–140.Google Scholar
  38. Fujita, S., Ichikawa, Y., Kawaratani, R. K., and Tonooka, Y., 1991, Preliminary inventory of sulfur dioxide emissions in East Asia, Atmos. Environ. 25A, 1409–1411.Google Scholar
  39. Galloway, J. N., 1985, The deposition of sulfur and nitrogen from the remote atmosphere, in J. N. Galloway et al. (eds.), The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, NATO ASI Series C, Math. & Phys. Sc. Vol. 159, pp. 143–176.Google Scholar
  40. Galloway, J. N. and Gaudry, A., 1984, The composition of precipitation on Amsterdam Island, Indian Ocean, Atmos. Environ. 12, 2649–2656.Google Scholar
  41. Galloway, J. N., Likens, G. E., Keene, W. C., and Miller, J. M., 1982, The composition of precipitation in remote areas of the world, J. Geophys. Res. 87, 8771–8776.Google Scholar
  42. Gillette, D. A. and Blifford, I. H., 1971, Composition of tropospheric aerosols as a function of altitude, J. Atmos. Sci. 28, 1199–1210.Google Scholar
  43. Giorgi, F. and Chameides, W. L., 1986, Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model, J. Geophys. Res. 91, 14367–14376.Google Scholar
  44. Goldan, P. D., Kuster, W. C., Albritton, D. L., and Fehsenfeld, F. C., 1987, The measurement of sulfur emissions from soils and vegetation: Three sites in the eastern United States revisited, J. Atmos. Chem. 5, 439–437.Google Scholar
  45. Green, J. S. A., 1970, Transfer properties of the large-scale eddies and the general circulation of the atmosphere, Quart. J. Roy. Meteor. Soc. 96, 157–185.Google Scholar
  46. Hahn, C. J., Warren, S. G., London, J., Chervin, R. M., and Jenne, R., 1982, Atlas of simultaneous occurrence of different cloud types over the ocean, Tech. Note NCAR/TN-201+STR, NCAR, Boulder, CO.Google Scholar
  47. Hameed, S. and Dignon, J., 1988, Changes in the geographical distributions of global emissions of NOx and SOx from fossil fuel combustion between 1966 and 1980, Atmos. Environ. 22, 441–449.Google Scholar
  48. Hao, W. M., Liu, M. H., and Crutzen, P. J., 1991, Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975–1980, in J. G. Goldammer (ed.), Fire In the Tropical Biota, Springer-Verlag, Berlin, pp. 440–462.Google Scholar
  49. Hegg, D. A., 1985, The importance of liquid-phase oxidation of SO2 in the troposphere, J. Geophys. Res. 90, 3773–3779.Google Scholar
  50. Heintzenberg, J. and Larssen, S., 1983. SO2 and SO4 2− in the arctic: interpretation of observations at three Norwegian arctic-subaretic stations, Tellus 35B, 255–265.Google Scholar
  51. Henderson-Sellers, A., Wilson, M. F., Thomas, G., Dickinson, R. E., 1986, Current global land-surface data sets for use in climate related studies, NCAR/TN-272+STR, Atmospheric Analysis and Prediction Division, National Center for Atmospheric Research, Boulder, CO.Google Scholar
  52. Herrman, J. and Jaeschke, W., 1984, Measurements of H2S and SO2 over the Atlantic Ocean, J. Atmos. Chem. 1, 111–123.Google Scholar
  53. Huebert, B. J. and Lazrus, A. L., 1980, Bulk composition of aerosols in the remote troposphere, J. Geophys. Res. 85, 7337–7344.Google Scholar
  54. Huebert, B. J., Lee, G., and Warren, W. L., 1990, Airborne aerosol inlet passing efficiency measurement, J. Geophys. Res. 95, 16369–16381.Google Scholar
  55. Hynes, A. J., Wine, P. H., and Semmes, D. H., 1986, Kinetics and mechanism of OH reactions with organic sulfides, J. Phys. Chem. 90, 4148–4156.Google Scholar
  56. Isaksen, I. and Rodhe, H., 1978, A two-dimensional model for the global distribution of gases and aerosol particles in the troposphere, Report AC-47, International Meteorological Institute, University of Stockholm.Google Scholar
  57. Iversen, T., 1989, Numerical modelling of the long range atmospherie transport of sulphur dioxide and particulate sulphate to the arctic. Atmos. Environ. 23, 2571–2595.Google Scholar
  58. Jaeger, L., 1976, Monatskarten des Niederschlags für die ganze Erde, Berichte des Dt. Wetterdientes, 139.Google Scholar
  59. Junge, C. E. and Gustafson, P. E., 1957. On the distribution of sea salt over the United States and its removal by precipitation, Tellus 9, 164–173.Google Scholar
  60. Lamb, B., Westberg, H., Allwine, G., Bamesberger, L., and Guenther, A., 1987, Measurement of biogenic sulfur emissions from soils and vegetation: Application of dynamic enclosure methods with Natusch filter and GC/FPD analysis, J. Atmos. Chem. 5, 469–491.Google Scholar
  61. Langner, J., Rodhe, H., and Olofsson, M., 1990, Parameterization of subgrid scale vertical transport in a global two-dimensional model of the troposphere, J. Geophys. Res. 95, 13691–13706.Google Scholar
  62. Leck, C., Larsson, U., Bågander, L. E., Johansson, S., and Hajdu, S., 1990, DMS in the Baltic Sea-Annual variability in relation to biological activity, J. Geophys. Res. 95, 3353–3363.Google Scholar
  63. Leck, C. and Rodhe, H., 1991, Emissions of marine biogenic sulfur to the atmosphere of Northern Europe, J. Atmos. Chem. 12, 63–86.Google Scholar
  64. Legrand, M. and Delmas, R. J., 1984, The ionic balance of Antarctic snow, a 10-yr detailed record, Atmos. Environ. 18, 1867–1874.Google Scholar
  65. Lelieveld, J., 1990, The role of clouds in tropospheric photochemistry, Thesis, University of Utrecht, Netherlands.Google Scholar
  66. Lelieveld, J., Crutzen, P. J., and Rodhe, H., 1989, Zonal average cloud characteristics for atmospheric chemistry modelling, Report CM-76, International Meteorological Institute, University of Stockholm.Google Scholar
  67. Lelieveld, J. and Crutzen, P. J., 1990, Influences of cloud photochemical processes on tropospheric ozone, Nature 343, 227–233.Google Scholar
  68. Levy, H., Galloway, J. N., Eliassen, A., Fischer, B. E. A., Gorzelska, K., Hastie, D. R., Moody, J. L., Ryaboshapko, A. G., Savoie, D., Whelpdale, D. M., 1990, The long-range transport of sulfur and nitrogen compounds, in A. H. Knap (ed.), The Long-Range Atmospheric Transport of Natural and Contaminant Substances, Kluwer Academic Publishers, Dordrecht, pp. 231–257.Google Scholar
  69. Lezberg, E. A., Humenik, F. M., and Otterson, D. A., 1979, Sulfate and nitrate mixing ratios in the vicinity of the tropopause, Atmos. Environ. 13, 1299–1304.Google Scholar
  70. Likens, G. E., Keene, W. C., Miller, J. M., and Galloway, J. N., 1987, The chemistry of precipitation in Katherine, Australia, J. Geophys. Res. 92, 13299–13314.Google Scholar
  71. Marland, G., Rotty, R. M., and Treat, N. L., 1985, CO2 from fossil fuel burning: global distribution of emissions, Tellus 37B, 243–258.Google Scholar
  72. Maroulis, P. J., Torres, A. L., Goldberg, A. B., and Bandy, A. R., 1980, Atmospheric SO2 measurements on project Gametag, J. Geophys. Res. 85, 7345–7349.Google Scholar
  73. Martin, A., 1984, Estimated washout coefficients for sulfur dioxide, nitric oxide, nitrogen dioxide and ozone, Atmos. Environ. 18, 1955–1961.Google Scholar
  74. Mason, B. J., 1971, The Physics of Clouds, Clarendon Press, Oxford.Google Scholar
  75. Meixner, F. X., 1984, The vertical sulfur dioxide distribution at the tropopause level, J. Atmos. Chem. 2, 175–189.Google Scholar
  76. Mueller, P. K., Hidy, G. M., Warren, K., Lavery, T. F., and Baskett, R. L., 1980, The occurrence of atmospheric aerosols in the northeastern United States, Ann. NY Acad. Sci. 338, 463–482.Google Scholar
  77. Murgatroyd, R. J., 1969, Estimation from geostrophic trajectories of horizontal diffusivity in the midlatitude troposphere and lower stratosphere, Quart. J. Roy. Meteorol. Soc. 95, 40–62.Google Scholar
  78. Möller, D., 1984, Estimation of the global man-made sulphur emission, Atmos. Environ. 18, 19–27.Google Scholar
  79. Newell, R. E., Kidson, J. W., Vincent, D. G., and Boer, G. J., 1974, The General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes, Vol 2, MIT Press, Cambridge, Mass.Google Scholar
  80. Newhall, C. G. and Self, S., 1982, The Voleanic Explosivity Index (VEI): An estimate of the explosive magnitude for historical volcanism, J. Geophys. Res. 87, 1231–1238.Google Scholar
  81. Nguyen, B. C., Bergeret, C., and Lambert, G., 1984, Exchange rates of dimethylsulfide between the ocean and atmosphere, in W. Brutsaert and G. H. Jirka (eds.), Gas Transfer at Water Surfaces. D. Reidel, Dordrecht, pp. 539–545.Google Scholar
  82. Nguyen, B. C., Bonsang, B., and Gaudry, A., 1983, The role of the ocean in the global atmospheric sulfur cycle, J. Geophys. Res. 88, 10903–10914.Google Scholar
  83. Nguyen, G. P., Mihalopoulous, N., and Belviso, S., 1990, Seasonal variation of atmospheric dimethylsulfide at Amsterdam Island in the Southern Indian Ocean, J. Atmos. Chem. 11, 123–142.Google Scholar
  84. Ockelmann, G. E. F. and Georgii, H. W., 1989, Großräumige verteilung des atmosphärischen schwefeldioxids in der freien Troposphäre, Meteorol. Rdsch. 41, 136–146.Google Scholar
  85. OECD, 1977, The OECD programme on long range transport of air pollutants: Summary report, OECD, Paris.Google Scholar
  86. Oort, A. H., 1983, Global atmospheric circulation statistics, 1958–1973, NOAA professional paper No. 14, U.S. Government Printing Office, Washington, DC.Google Scholar
  87. Penkett, S. A., Jones, B. M. R., Brice, K. A., and Eggleton, A. E. J., 1979, The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rain water, Atmos. Environ. 13, 123–137.Google Scholar
  88. Plane, J. M., 1989, Gas-phase atmospheric oxidation of biogenic sulfur compounds: A review, in E. S. Saltzmann and W. J. Cooper (eds.), Biogenic Sulfur in the Environment, American Chemical Society, Washington, DC, 404–423.Google Scholar
  89. Pszenny, A. A., McIntyre, P. F., and Duce, R. A., 1982, Seasalt and the acidity of marine rain on the windward coast of Samoa, Geophys. Res. Lett. 9, 751–754.Google Scholar
  90. Rodhe, H. and Grandell, J., 1972, On the removal time of aerosol particles from the atmosphere by precipitation scavenging, Tellus 24, 442–454.Google Scholar
  91. Rodhe, H. and Isaksen, I., 1980, Global distribution of sulfur compounds in the troposphere estimated in a height/latitude transport model, J. Geophys. Res. 85, 7401–7409.Google Scholar
  92. Rodhe, H., Mukolwe, E., and Söderlund, R., 1981, Chemical composition of precipitation in East Africa, Kenya J. Sci. Technol. (A) 2, 3–11.Google Scholar
  93. Rotty, R. M., 1987, Estimates of seasonal variation in fossil fuel CO2 emissions, Tellus 39B, 184–202.Google Scholar
  94. Ryaboshapko, A. G., 1983, The atmospheric sulphurcycle, in M. V. Ivanov and J. R. Freney (eds.), The Global Biogeochemical Sulphur Cycle. SCOPE 19, 203–296.Google Scholar
  95. Saltzman, E. S. and Cooper, D. J., 1988, Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the Carribean and Gulf of Mexico, J. Atmos. Chem. 7, 191–209.Google Scholar
  96. Saltzman, E. S., Savoie, D. L., Prospero, J. M., and Zika, R. G., 1985, Atmospheric methane sulfonic acid and non-sea-salt sulfate at Fanning and American Samoa, Geophys. Res. Lett. 9, 437–440.Google Scholar
  97. Saltzman, E. S., Savoie, D. L., Prospero, J. M., and Zika, R. G., 1986, Methanesulfonic acid and non-sea-salt sulfate in Pacific air: Regional and seasonal variations, J. Atmos. Chem. 4, 227–240.Google Scholar
  98. Savoie, D. L. and Prospero, J. M., 1989, Comparison of oceanic and continental sources of non-seasalt sulphate over the Pacific Ocean, Nature 339, 685–687.Google Scholar
  99. Savoie, D. L., Prospero, J. M., and Saltzmann, E. S., 1989, Non-sea-salt sulfate and nitrate in trade wind aerosols at Barbados: Evidence for long range transport, J. Geophys. Res. 94, 5069–5080.Google Scholar
  100. Savoie, D. L., Prospero, J. M., Larsen, R. J., and Saltzmann, E. S., 1991, Nitrogen and sulfur species in aerosols at Mawson, Antarctica, and their relationship to radionuclides, J. Atmos. Chem., in press.Google Scholar
  101. Schaug, J., Hanssen, J. E., Nodop, K., Ottar, B., and Pacyna, J. M., 1987, Summary report from the chemical co-ordinating centre for the third phase of EMEP, EMEP/CCC-report 3/87. The Norwegian Institute for Air Research, Lillestrøm, Norway, 160 pp.Google Scholar
  102. Semb, A., 1985, Circumpolar SO2 emission survey. Norwegian Institute for Air Research, Lillstrøm, Norway, NILU OR 69/85.Google Scholar
  103. Shaw, G., 1983, Bio-controlled thermostasis involving the sulfur cycle, Climatic Change 5, 297–303.Google Scholar
  104. Shaw, R. W.Jr. and Paur, R. J., 1983, Measurements of sulfur gases and particles during sixteen months in the Ohio River Valley, Atmos. Environ. 17, 1431–1438.Google Scholar
  105. Shim, S. and Carmichael, G. R., 1991, The STEM-II acid deposition and photochemical model-II. A diagnostic analyses of mesoscale acid deposition, Atmos. Environ. 25B, 25–45.Google Scholar
  106. Simkin, T., Siebert, L., McClelland, L., Bridge, D., Newhall, C., and Latter, J. H., 1981, Volcanoes of the world: a regional directory, Gazetteer, and chronology of volcanism during the last 10000 years, Hutchinson Ross Publishing Company, Stroudsburg. Pennsylvania.Google Scholar
  107. Stoiber, R. E., Williams, S. N., and Huebert, B., 1987, Annual contribution of sulfur dioxide to the atmosphere by volcanoes, J. Volcanol. Geotherm. Res. 33, 1–8.Google Scholar
  108. Thornton, D. C., Bandy, A. R., and Drieger, A. R., 1987, Sulfur dioxide over the western Atlantic ocean, Global Biogeochemical Cycles 1, 317–328.Google Scholar
  109. Troe, J., 1979, Predictive possibilities of unimolecular rate theory, J. Phys. Chem. 83, 114–133.Google Scholar
  110. Tuncel, G., Aras, N. K., and Zoller, W. H., 1989, Temporal variations and sourees of elements in the South Pole atmosphere, 1. Nonenriched and moderately enriched elements, J. Geophys. Res. 94, 13025–13038.Google Scholar
  111. Várhelyi, G., 1985, Continental and global sulfur budgets-I Anthropogenic SO2 emissions, Atmos. Environ. 19, 1029–1040.Google Scholar
  112. Warren, S. G., Hahn, C. J., London, J., Chervin, R. M. and Jenne, R. L., 1986, Global distribution of total cloud cover and cloud type amounts over land. NCAR Technical Note TN-273 + STR, Boulder, CO.Google Scholar
  113. Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., and Jenne, R. L., 1988, Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Technical Note TN-317 + STR, Boulder, CO.Google Scholar
  114. Watts, S. F., Brimbelcombe, P., and Watson, A. J., 1990, Methanesulphonic acid, dimethyl sulphoxide and dimethyl sulphone in acrosols, Atmos. Environ. 24A, 353–359.Google Scholar
  115. Whelpdale, D. M., Keene, W. C., Hansen, A. D. A., and Boatman, J., 1987, Aircraft measurements of sulfur, nitrogen and carbon species during WATOX-86, Global Biogeochemical Cycles 1, 357–368.Google Scholar
  116. Wolff, G. R., Ruthkosky, M. S., Stroup, D. P., Korsog, P. E., Ferman, M. A., Wendel, G. J., and Stedman, D. H., 1986, Measurements of SOx, NOx, and aerosol species on Bermuda, Atmos. Environ. 20, 1229–1239.Google Scholar
  117. Zimmermann, P. H., 1984, Ein dreidimensionales numerisches Transportmodell für atmosphärische Spurenstoffe, Thesis, University of Mainz, FRG.Google Scholar
  118. Zimmermann, P. H., 1987, MOGUNTIA: A Handy Global Tracer Model, Proceedings of the sixteenth NATO/CCMS International Technical Meeting on air pollution modeling and its application, Lindau, FRG, Apr. 6–10, D. Reidel, Dordrecht.Google Scholar
  119. Zimmermann, P. H., Feichter, J., Rath, H. K., Crutzen, P. J., and Weiss, W., 1989, A global three-dimensional source receptor model investigation using Kr85, Atmos. Environ. 23, 25–35.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • J. Langner
    • 1
  • H. Rodhe
    • 1
  1. 1.Department of MeteorologyStockholm UniversityStockholmSweden

Personalised recommendations