Advertisement

Earth, Moon, and Planets

, Volume 58, Issue 1, pp 1–29 | Cite as

Heat loss and tectonic style of Venus

  • P. Janle
  • A. T. Basilevsky
  • M. A. Kreslavsky
  • E. N. Slyuta
Article

Abstract

The tectonic style of a terrestrial planet depends strongly on the mechanisms of heat release from the mantle through the lithosphere to the surface. Three types of lithospheric heat transfer have been proposed. (1) Lithospheric conduction, (2) (hot spot) volcanism, (3) plate recycling (mainly at spreading plate margins). In the case of the Earth the total heat flow is determined by plate recycling 65%, heat conduction through the lithosphere 20%, decay of radioactive elements in the crust 15%, hot spot volcanism <1%. Scaling the mean surface heat flow density of the Earth to venusian conditions leads to 66 mW/m2. In the case of Venus plate tectonics play only a minor role. Thus, two processes remain for heat release: (hot spot) volcanism and conduction. The term “hot spot” is written in brackets because volcanism on Venus occurs globally, not necessarily associated with hot spots.

The volcanic lava production has been estimated from Venera 15/16 scenes. Arecibo and Magellan images revealed that the surface character south of 30° N is very similar to the area covered by Venera. The main results of the estimation are: (i) The maximum thickness of the plain lavas is 3 km. (ii) With plain lava thicknesses larger than 200 m the lava production from central volcanoes is negligible, (iii) Two age models have been used for the mean age of the area obseved: Δt1 = 109 a, Δt2 = 400 x 106 a. Δt1 leads to the maximum lava production rate of 3 km3/a compared to 20 to 25 km3/a of the Earth; this gives a maximum contribution of 0.75mW/m2 to the heat flow density of Venus, i.e. about 1%. This implies that either heat conduction is the only dominating process for heat release or there is a hidden reservoir of the “missing basalt” somewhere or there is another unknown tectonic process. Assuming pure conduction and correcting the surface heat flow density for radioactive elements in the crust leads to a thickness of the thermal lithosphere of 45km. A reservoir for the “missing basalt” could be basaltic underplating to a depth of 100 km. This gives a contribution of about 20 mW/m2 with the age model δt2 to the heat flow density from first order calculations.

While the tectonic style of the Earth can be described to be linear formed at the plate margins, the surface of Venus is characterized by global spotty volcanism. The surface is more dominated by volcanic landforms than in the case of the Earth despite the relatively low lava production rate with a maximum of 3 km3/a. As plate tectonics is a minor process on Venus, conduction through a rather thin lithosphere should play an important role for heat release.

Keywords

Lithosphere Heat Release Plate Margin Total Heat Flow Central Volcano 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. L.: 1981, Plate Tectonics on Venus Geophys. Res. Lett. 8, 309–311.Google Scholar
  2. Arvidson, R. E., Grimm, R. E., Phillips, R. J., Schaber, G. G., and Shoemaker, E. M.: 1990, ‘On the Nature and Rate of Resurfacing of Venus’ Geophys. Res. Lett. 17, 1385–1388.Google Scholar
  3. Barsukov, V. L., Surkov, Y. A., Moskaleva, L. P., Shcheglov, O. P., Kharyukova, V. P., Manvelyan, O. S., and Perminov, V. G.: 1982, Geochemical Studies of the Surface of Venus by the Venera 13 and 14 Space Probes Geochimica 7, 899–919.Google Scholar
  4. Basilevsky, A. T., Kuzmin, R. O., Nikolaeva, O. V., Pronin, A. A., Ronca, L. B., Avduevsky, V. S., Uspensky, G. R., Cheremukhina, Z. P., Semenchenko, V. V., and Ladygin, V. M.: 1985, The Surface of Venus as Revealed by the Venera Landings: Part II Bull. Am. Geol. Soc. 96, 137–144.Google Scholar
  5. Basilevsky, A. T., Pronin, A. A., Ronca, L. B., Kryuchkov, V. P., Sukhanov, A. L., and Markov, M. S.: 1986, Styles of Tectonic Deformation on Venus: Analysis of Venera 15 and 16 Data Proc. Lunar Plan. Sci. Conf. 16, Part 2. J. Geophys. Res. 91, D399–D411.Google Scholar
  6. Basilevsky, A. T., Kryuchkov, V. P., and Bobina, N. N.: 1989, Areal Distribution of the Latest Volcanic Activity as a Key to Global Tectonic Style: Comparison of Northern Venus and the Pacific LPSC XX, 48–49.Google Scholar
  7. Bazilevskiy, (i.e., Basilevsky), A. T.: 1989, The Planet Next Door Sky and Telescope 77(4), 360–368.Google Scholar
  8. Beatty, J. K.: 1985, A Radar Tour of Venus Sky and Telescope 69(6), 507–510.Google Scholar
  9. Beatty, J. K.: 1991, Venus in the Radar Spotlight Sky and Telescope 82(1), 24–30.Google Scholar
  10. Beatty, J. K. and Chaikin, A. (eds.): 1990, The New Solar System, 3rd ed. Sky Publ. Corp. and Cambridge Univ. Press, Cambridge, Mass.Google Scholar
  11. Bott, M. H. P.: 1982, The Interior of the Earth, Edward Arnold, London.Google Scholar
  12. Cattermole, P.: 1989, Planetary Volcanism, Ellis Horwood, Chichester.Google Scholar
  13. Esposito, P. B., Sjogren, W. L., Mottinger, N. A., Bills, B. G., and Abbott, E.: 1982, Venus Gravity: Analysis of Beta Regio Icarus 51, 448–459.Google Scholar
  14. Fegley, B. and Prinn, R. G.: 1989, Estimation of the Rate of Volcanism on Venus from Reaction Rate Measurements, Nature 337, 55–58.Google Scholar
  15. Flasar, F. M. and Birch, F.: 1973, Energetics of Core Formation: A Correction J. Geophys. Res. 78, 6101–6103.Google Scholar
  16. Florensky, K. P., Ronca, L. B., Basilevsky, A. T., Burba, G. A., Nikolaeva, O. V., Pronin, A. A., Trakhtman, A. M., Volkov, V. P., and Zazetsky, V. V.: 1977, The Surface of Venus as Revealed by Soviet Venera 9 and 10 Bull. Am. Geol. Soc. 88, 1537–1545.Google Scholar
  17. Frank, S. L. and Head, J. W.: 1990, Ridge Belts on Venus: Morphology and Origin Earth, Moon, and Planets 50/51, 421–470.Google Scholar
  18. Grimm, R. E. and Solomon, S. C.: 1987, Limits on Modes of Lithospheric Heat Transport on Venus from Impact Crater Density Geophys. Res. Lett. 14, 538–541.Google Scholar
  19. Head, J. W.: 1990, The Formation of Mountain Belts on Venus: Evidence for Large-Scale Convergence, Underthrusting, and Crustal Imbrication in Freyja Montes, Ishtar Terra Geology 18, 99–102.Google Scholar
  20. Head, J. W. and Crumpler, L. S.: 1987, Evidence for Divergent Plate-Boundary Characteristics and Crustal Spreading on Venus Science 238, 1380–1385.Google Scholar
  21. Head, J. W., Campbell, D. B., Elachi, Ch., Guest, J. E., McKenzie, D. P., Saunders, R. S., Schaber, G. G., and Schubert, G.: 1991, Venus Volcanism: Initial Analysis from Magellan Data, Science 252, 276–288.Google Scholar
  22. Hunten, D. M., Colin, L., Donahue, T. M., and Moroz, V. I. (eds.): 1983, Venus, The University of Arizona Press, Tucson, Arizona.Google Scholar
  23. Ivanov, B. A., Basilevsky, A. T., Kryuchkov, V. P., and Chernaya, I. M.: 1986, Impact Craters of Venus: Analysis of Venera 15 and 16 Data Proc. Lunar Plan. Sci. Conf. 16, Part 2, J. Geophys. Res. 91, D413–D430.Google Scholar
  24. Ivanov, M. A. and Basilevsky, A. T.: 1990, Coronae and Major Shields on Venus: Comparisons of their Areas, Basal Altitudes and Areal Distribution Earth, Moon, and Planets 50/51, 409–420.Google Scholar
  25. Janle, P. and Meissner, R.: 1986, Structure and Evolution of the Terrestrial Planets Surveys in Geophys. 8, 107–186.Google Scholar
  26. Janle, P., Jannsen, D., and Basilevsky, A. T.: 1988, Tepev Mons on Venus: Morphology and Elastic Bending Models Earth, Moon, and Planets 41, 127–139.Google Scholar
  27. Kaula, W. M. and Phillips, R. J.: 1981, Quantitative Tests for Plate Tectonics on Venus Geophys. Res. Lett. 8, 1187–1190.Google Scholar
  28. Kryuchov, V. P.: 1990, Ridge Belts: Are They Compressional or Extensional Structures? Earth, Moon, and Planets 50/51, 471–491.Google Scholar
  29. Kryuchkov, V. P. and Basilevsky, A. T.: 1989, Radar-Bright Flow-Like Features as Possible Traces of the Latest Volcanic Activity on Venus LPSC XX, 548–549.Google Scholar
  30. Langseth, M. G., Keihm, S. J., and Peters, K.: 1976, Revised Lunar Heat-Flow Values Proc. Lunar Sci. Conf. 7, 3143–3171.Google Scholar
  31. Leonov, Yu. G. and Khain, V. E. (eds.): 1982, Tectonic Map of the World 1:15 000 000, Commission of International Tectonic Maps of the USSR Academy of Sciences, Moscow.Google Scholar
  32. Masursky, H., Eliason, E., Ford, P. G., McGill, G. E., Pettengill, G. H., Schaber, G. G., and Schubert, C.: 1980, Pioneer Venus Radar Results: Geology from Images and Altimetry J. Geophys. Res. 85, 8232–8260.Google Scholar
  33. McLean, D. M.: 1985, Mantle Degassing Induced Dead Ocean in the Cretateous-Tertiary Transition in E. T. Sundquist and W. S. Broecker (eds.), The Carbon Cycle and Atmospheric CO 2, Natural Variations Archaean to Present, Geophys. Monogr. Ser. 32, 493–503, AGU, Washington, D.C.Google Scholar
  34. Meissner, R.: 1983, Evolution of Plate Tectonics on Terrestrial Planets Annales Geophysicae 1, 121–127.Google Scholar
  35. Newsom, H. E. and Taylor, S. R.: 1989, Geochemical Implications of the Formation of the Moon by a Single Giant Impact, Nature 238, 29–34.Google Scholar
  36. Parsons, B.: 1981, The Rates of Plate Creation and Consumption Geophys. J. R. Astr. Soc. 67, 437–448.Google Scholar
  37. Peale, S. J. and Cassen, P.: 1978, Contribution of Tidal Dissipation to Lunar Thermal History Icarus 36, 245–269.Google Scholar
  38. Phillips, R. J., Arvidson, R. E., Boyce, J. M., Campbell, D. B., Guest, J. E., Schaber, G. G., and Soderblom, L. A.: 1991, Impact Craters on Venus: Initial Analysis from Magellan Science 252, 288–297.Google Scholar
  39. Prinn, R. G.: 1985, The Volcanoes and Clouds on Venus Scient. Am. 252(3), 36–43.Google Scholar
  40. Pronin, A. A.: 1986, The Structure of Lakshmi Planum, an Indication of Horizontal Asthenospheric Flows on Venus, Geotectonics 20, 271–281.Google Scholar
  41. Pronin, A. A.: 1990, Lakshmi Planum on Venus: Local Convergence or Radial Spreading? LPSC XXI, 987–988.Google Scholar
  42. Saunders, R. S., Arvidson, R. E., Head III, J. W., Schaber, G. G., Stofan, E. R., and Solomon, S. C.: 1991, An Overview of Venus Geology Science 252, 249–252.Google Scholar
  43. Schaber, G. G., Shoemaker, E. M., and Kozak, R. C.: 1987, The Surface Age of Venus: Use of the Terrestrial Cratering Record Sol. Syst. Res. 21, 89–93.Google Scholar
  44. Schaber, G. G. and Kozak, R. C.: 1989, Morphologies of Ten Venusian Shields Between Lat. 30 and 90 ‡ N, LPSC XX, 954–955.Google Scholar
  45. Schubert, G., Stevenson, D., and Cassen, P.: 1980, Whole Planet Cooling and the Radiogenic Heat Source Contents of the Earth and Moon J. Geophys. Res. 85, 2531–2538.Google Scholar
  46. Schubert, G., Spohn, T., and Reynolds, R. T.: 1986, Thermal Histories, Compositions and Internal Structures of the Moons of the Solar System in J. A. Burns and M. S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, Arizona, pp. 224–292.Google Scholar
  47. Sclater, J. G., Jaupart, C., and Galson, D.: 1980, The Heat Flow through the Oceanic and Continental Crust and the Heat Loss of the Earth Rev. Geophys. Space Phys. 18, 269–311.Google Scholar
  48. Slyuta, E. N. and Nikolayeva, O. V.: 1991, Volcanism, in Venus Geology, Geochemistry, Geophysics: Soviet Point of View, University of Arizona Press, Tucson, Arizona (in press).Google Scholar
  49. Solomatov, V. S. and Zharkov, V. N.: 1990, The Thermal Regime of Venus Icarus 84, 280–295.Google Scholar
  50. Solomon, S. C.: 1979, Formation, History and Energetics of Cores in the Terrestrial Planets Phys. Earth Plan. Int. 19, 168–182.Google Scholar
  51. Solomon, S. C. and Head, J. W.: 1982, Mechanism for Lithospheric Heat Transport on Venus: Implications for Tectonic Style and Volcanism J. Geophys. Res. 87, 9236–9246.Google Scholar
  52. Solomon, S. C., Head, J. W., Kaula, W. M., McKenzie, D., Parsons, B., Phillips, R. J., Schubert, G., and Talwani, M.: 1991, Venus Tectonics: Initial Analysis from Magellan Science 252, 297–312.Google Scholar
  53. Stacey, F. D.: 1977, Physics of the Earth, 2nd ed. John Wiley & Sons, New York.Google Scholar
  54. Stefanik, M. and Jurdy, D. M.: 1984, The Distribution of Hot Spots J. Geophys. Res. 89, 9919–9925.Google Scholar
  55. Stofan, E. R., Head, J. W., and Parmentier, E. M.: 1987, Corona Structures on Venus: Models of Origin, LPSC XVIII, 954–955.Google Scholar
  56. Sukhanov, A. L.: 1987, “Spiders” on Venus: Ring complexes LPSC XVII, 976–977.Google Scholar
  57. Surkov, Y. A., Kirnozov, F. F., Glazov, V. N., Dunchenko, A. G., Tatsy, L. P., and Sobornov, O. P.: 1986, Uranium, Thorium and Potassium in the Venusian Rock at the Landing Sites of Vegas 1 and 2 LPSC XVII, 847–848.Google Scholar
  58. Turcotte, D. L.: 1989, A Heat Pipe Mechanism for Volcanism and Tectonics on Venus J. Geophys. Res. 94, 2779–2785.Google Scholar
  59. Turcotte, D. L., Cooke, F. A., and Willeman, R. J.: 1979, Parameterized Convection within the Moon and the Terrestrial Planets Proc. Lunar Planet. Sci. Conf. 10, 2375–2392.Google Scholar
  60. Turcotte, D. L. and Schubert, G.: 1982, Geodynamics, John Wiley and Sons, New York.Google Scholar
  61. Vink, G. E., Morgan, W. J., and Vogt, P. R.: 1985, The Earth's Hot Spots Scientific American 252(4), 50–57.Google Scholar
  62. Vinogradov, A. P., Surkov, Yu. A., and Kirnozov, F. F.: 1973, The Content of Uranium, Thorium and Potassium in the Rocks of Venus as Measured by Venera 8 Icarus 20, 253–259.Google Scholar
  63. Vorder Bruegge, R. W. and Head, J. W.: 1990, Tectonic Evolution of Eastern Ishtar Terra, Venus Earth, Moon, Planets 50/51, 251–304.Google Scholar
  64. White, R. S. and McKenzie, D. P.: 1989, Magmatism at Rift Zones: the Generation of Volcanic Continental Margins and Flood Basalts J. Geophys. Res. 94, 7685–7729.Google Scholar
  65. Wood, J. A., Buck, W. R., Anders, E., Morgan, J. W., Stolper, E., Anderson, D. L., Kaula, W. M., Consolmagno, G. J., Ringwood, A. E., and Wänke, H.: 1981, Geophysical and Cosmochemical Constraints on Properties of Mantles of Terrestrial Planets, in Basaltic Volcanism of the Terrestrial Planets, (Basaltic Volcanism Study Project), Pergamon, New York, pp. 633–699.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • P. Janle
    • 1
  • A. T. Basilevsky
    • 2
  • M. A. Kreslavsky
    • 2
  • E. N. Slyuta
    • 2
  1. 1.Institut für Geophysik der Universität KielGermany
  2. 2.Vernadsky Institute of Geochemistry and Analytical Chemistry, USSR Academy of SciencesMoscowU.S.S.R.

Personalised recommendations