Earth, Moon, and Planets

, Volume 40, Issue 1, pp 1–19 | Cite as

The origin and specific features of the martian satellites in the context of the euruption concept

  • E. M. Drobyshevski


The numerous problems related to the origin and evolution of Phobos and Deimos, as well as to specific features of their topography, are readily accounted for in the context of a concept presupposing the possibility of detonation (or burning) of electrolyzed ices.

The explosion of an ‘icy’ asteroid of mass mA \> 1023 g within the gravitational sphere of Mars resulted in the capture of secondary fragments into satellite orbits and the formation of a ring of icy and rocky particles. The motion of satellites in the ring reduced the eccentricities of their orbits and rendered their mutual collisions impossible. The thick regolith of Deimos is the material captured from the ring.

The impact responsible for the Stickney crater on Phobos initiated a detonation in the material in the crater, and the detonation, in its turn, ignited the products of electrolysis in the bulk of the satellite. Phobos lost its regolith because of detonation-induced acceleration. As a result of the burning out of Phobos's ices, its density somewhat exeeds that of Deimos.

Different grooves on Phobos have differing origins. The grooves of groups B, E, D (as specified by P. Thomas et al., J. Geophys. Res., 84, 8457–8477, 1979) are due to fracturing caused by the Sickney event; group C (which is normal to the minor axis of the Phobos ellipsoid) reflects the layered nature of the parent asteroid; while the closely arranged group A grooves, which are normal to Phobos's major axis, were formed during the contraction of the satellite as a result of the loss of burnt-out ices. A number of conclusions are drawn which can be tested by future missions to the satellites.


Burning Major Axis Minor Axis Numerous Problem Satellite Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agafonova, I. I. and Drobyshevski, E. M.: 1985a, Earth, Moon, and Planets 33, 1.Google Scholar
  2. Agafonova, I. I. and Drobyshevski, E. M.: 1985b, Earth, Moon, and Planets 33, 111.Google Scholar
  3. Aziz, A. K., Hurwitz, H., and Sternberg, H. M.: 1961, Phys. Fluids 4, 380.Google Scholar
  4. Baum, F. A., Orlenko, L. P., Stanyukovitch, K. P., Tshelyshev, V. P., and Shechter, B. I.: 1975, The Physics of Explosion (in Russian), 2nd ed., Nauka, Moscow.Google Scholar
  5. Belov, V. P.: 1984, XIX National Conference on Meteoritics and Cosmochemistry(abstracts), Chernogolovka (Moscow, in Russian), pp. 123–124.Google Scholar
  6. Bogdanov, A. V.: 1981, J. Geophys. Res. 86, 6926.Google Scholar
  7. Burns, J. A.: 1978, Vistas in Astron. 22, 193.Google Scholar
  8. Campbell, P.: 1986, Nature 320, 220.Google Scholar
  9. Cazenave, A., Dobrovolskis, A., and Lago, B.: 1980, Icarus 44, 730.Google Scholar
  10. Davis, D. R., Housen, K. R., and Greenberg, R.: 1981, Icarus 47, 220.Google Scholar
  11. Degewij, J. and van Houten, C. J.: 1979, in T. Gehrels (ed.), Asteroids, Univ. Arizona Press, pp. 417–435.Google Scholar
  12. Dobrovolskis, A. R.: 1982, Icarus 52, 136.Google Scholar
  13. Dobrovolskis, A. R. and Burns, J. A.: 1980, Icarus 42, 422.Google Scholar
  14. Drobyshevski, E. M.: 1980, Moon and Planets 23, 339.Google Scholar
  15. Drobyshevski, E. M.: 1981, Moon and Planets 24, 13.Google Scholar
  16. Drobyshevski, E. M.: 1986, Earth, Moon, and Planets 34, 213.Google Scholar
  17. Drobyshevski, E. M.: 1988, Pis'ma Astron. Zh. (in press).Google Scholar
  18. Duxbury, T. C.: 1978, Vistas in Astron. 22, 149.Google Scholar
  19. Duxbury, T. C. and Callahan, J. D.: 1981, Astron. J. 86, 1722.Google Scholar
  20. Duxbury, T. C. and Callahan, J. D.: 1982, 13th Lunar and Planetary Sci. Conference (abstract), Houston, Texas.Google Scholar
  21. Fujiwara, A. and Asada, N.: 1983, Icarus 56, 590.Google Scholar
  22. Fujiwara, A. and Tsukamoto, A.: 1980, Icarus 44, 142.Google Scholar
  23. Gingerich, O.: 1978, Vistas in Astron. 22, 127.Google Scholar
  24. Greenberg, R.: 1978, Icarus 33, 62.Google Scholar
  25. Hunten, D. M.: 1979, Icarus 37, 113.Google Scholar
  26. Lambeck, K.: 1979, J. Geophys. Res. 84, 5651.Google Scholar
  27. Mignard, F.: 1981, Mon. Not. R. Astr. Soc. 194, 365.Google Scholar
  28. Madar, Ch. L.: 1979, Numerical Modelling of Detonation, Univ. Calif. Press, Berkeley-Los Angeles-London.Google Scholar
  29. Pang, K. D., Pollack, J. B., Veverka, J., Lane, A. L., and Ajello, J. M.: 1978, Science 199, 64.Google Scholar
  30. Pang, K. D., Rhoads, J. W., Lane, A. L., and Ajello, J. M.: 1980, Nature 283, 277.Google Scholar
  31. Pollack, J. B.: 1977, in J. A. Burns (ed.), Planetary Satellites, Univ. Arizona Press, Tucson, pp. 319–345.Google Scholar
  32. Pollack, J. B., Burns, J. A., and Tauber, M. E.: 1979, Icarus 37, 587.Google Scholar
  33. Pugachev, G. S.: 1985, ‘Solid Body Destruction under Impulse Loading’, Ph.D. Thesis, Leningrad (in Russian).Google Scholar
  34. Rinehart, J. S. and Pearson, J.: 1964, Behaviour of Metals under Impulsive Loads, Publ. Amer. Soc. of Metals, Cleveland.Google Scholar
  35. Ruskol, E. L.: 1982, Izv. Acad. Sci USSR (Fizika Zemli), N 6, 40.Google Scholar
  36. Schultz, P. H. and Lutz-Garihan, B.: 1982, Proc. Lunar Sci. Conf., 13th, 698.Google Scholar
  37. Sharpless, B. P.: 1945, Astron. J. 51, 185.Google Scholar
  38. Shklovski, I. S.: 1962, The Universe, Life and Intelligence, Izd. Acad. Sci. USSR, Moscow (in Russian).Google Scholar
  39. Shor, V. A.: 1975, Celest. Mech. 12, 61.Google Scholar
  40. Sinclair, A. T.: 1972, Mon. Not. R. Astron. Soc. 155, 249.Google Scholar
  41. Sinclair, A. T.: 1978, Vistas in Astron. 22, 133.Google Scholar
  42. Singer, S. F.: 1971, in T. Gehreis (ed.), Physical Studies of Minor Planets, U.S. Govt. Printing Office, pp. 399–405.Google Scholar
  43. Soter, S.: 1971, Centr. Radiophysics Space Res. Rep. N 462, Cornell Univ., Ithaca, N.Y.Google Scholar
  44. Soter, S. and Harris, A.: 1977, Nature 268, 421.Google Scholar
  45. Szeto, A. M. K.: 1983, Icarus 55, 133.Google Scholar
  46. Tolson, R. H., Duxbury, T. C., Born, G. H., Christensen, E. J., Diehl, R. E., Parless, D., Hildebrand, C. E., Mitchell, R. T., Molko, P. M., Morabito, L. A., Palluconi, F. D., Reichert, R. J., Taraji, H., Veverka, J., Neugebauer, G., and Findlay, J. T.: 1978, Science 199, 61.Google Scholar
  47. Thomas, P.: 1979, Icarus 40, 223.Google Scholar
  48. Thomas, P. and Veverka, J.: 1979, Icarus 40, 394.Google Scholar
  49. Thomas, P. and Veverka, J.: 1980a, Icarus 41, 364.Google Scholar
  50. Thomas, P. and Veverka, J.: 1980b, Icarus 42, 234.Google Scholar
  51. Thomas, P., Veverka, J., Bloom, A., and Duxbury, T.: 1979, J. Geophys. Res. 84, 8457.Google Scholar
  52. Veverka, J.: 1978, Vistas in Astron. 22, 163.Google Scholar
  53. Veverka, J. and Duxbury, T. C.: 1977, J. Geophys. Res. 82, 4213.Google Scholar
  54. Veverka, J. and Thomas, P.: 1979, in T. Gehreis (ed.), Asteroids, Univ. Arizona Press, pp. 628–651.Google Scholar
  55. Weidenschilling, S. J.: 1979, Nature 282, 697.Google Scholar
  56. Weissman, P. R.: 1986, Nature 320, 242.Google Scholar
  57. Woolfson, M.: 1978, Quart. J. Roy. Astron. Soc. 19, 101.Google Scholar
  58. Yoder, Ch. F.: 1982, Icarus 49, 327.Google Scholar
  59. Zharkov, V. N., Kozenko, A. V., and Maeva, S. V.: 1984, Astron. Vestnik 18, 83.Google Scholar

Copyright information

© D. Reidel Publishing Company 1988

Authors and Affiliations

  • E. M. Drobyshevski
    • 1
  1. 1.A. F. Ioffe Physical-Technical Institute, USSR Academy of SciencesLeningradU.S.S.R.

Personalised recommendations