Journal of Atmospheric Chemistry

, Volume 13, Issue 4, pp 359–372 | Cite as

Vertical column abundances and seasonal cycle of acetylene, C2H2, above the Jungfraujoch station, derived from IR solar observations

  • R. Zander
  • C. P. Rinsland
  • D. H. Ehhalt
  • J. Rudolph
  • P. H. Demoulin


Monthly mean total vertical column abundances of acetylene have been determined from series of infrared solar spectra recorded at the Jungfraujoch station, Switzerland, between June 1986 and April 1991. The data have been obtained by nonlinear least-squares fittings of the ν5 band R19 transition of C2H2 at 776.0818 cm-1. The average of 22 monthly mean total vertical columns of C2H2 retrieved during that time interval of almost 5 years was found to be equal to (1.81±0.12)×1015 molec/cm2, which corresponds to an average mixing ratio of (0,22±0.013) ppbv (parts per billion by volume) in a troposphere extending from the altitude of the station (3.58 km), up to 10.5 km. Despite the large variability found from year to year, a least-squares sine fit to the data reveals a seasonal variation with an amplitude of about ±40% of the mean; the maximum occurs during mid-winter and the minimum in the summer. The present results are compared critically with similar in-situ data found in the literature. A sinusoidal fit to all such free troposphere measurements made in-situ between 30°N and 60°N indicates good agreement in shape and phase with the seasonal variation derived above the Jungfraujoch, but their average column abundance, 2.3×1015 molec/cm2, is about 30% higher; this difference is explained on the basis of non-upwelling meteorological conditions generally prevailing during ground-based remote solar observations.

Key words

Acetylene atmospheric composition solar observations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken, A. C., Gallagher, C. C., Spicer, C. W., and Holden, M. W., 1987, Measurement of methane and other light hydrocarbons in the troposphere and lower stratosphere, J. Geophys. Res. 92, 3135–3138.Google Scholar
  2. Brown, L. R., Farmer, C. B., Rinsland, C. P., and Toth, R. A., 1987, Molecular line parameters for the atmospheric trace molecule spectroscopy experiment, Appl. Opt. 26, 5154–5182.Google Scholar
  3. Cronn, D. R. and Robinson, E., 1979, Tropospheric and lower stratospheric profile of ethane and acetylene, Geophys. Res. Lett. 6, 641–644.Google Scholar
  4. Chatfield, R. B. and Crutzen, P. J., 1984, Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors, J. Geophys. Res. 89, 7111–7132.Google Scholar
  5. Ehhalt, D. H., Rudolph, J., Meixner, F., and Schmidt, U., 1985, Measurements of selected C2-C5 hydrocarbons in the background troposphere: vertical and latitudinal variations, J. Atmos. Chem. 3. 29–52.Google Scholar
  6. Ehhalt, D. H., Rudolph, J., and Schmidt, U., 1986, On the importance of light hydrocarbons in multiphase systems, in J., Jaesehke (ed.), Chemistry of Multiphase Atmospheric Systems, Springer-Verlag, Berlin, Heidelberg, pp. 321–350.Google Scholar
  7. Ehhalt, D. H., Schmidt, U., Zander, r., Demoulin, Ph., and Rinsland, C. P., 1991, Seasonal cycle and secular trend of the total and tropospheric column abundance of ethane above the Jungfraujoch, J. Geophys. Res. 96, 4985–4994.Google Scholar
  8. Farmer, C. B. and Norton, R. H., 1989. A high-resolution atlas of the infrared spectrum of the sun and the earth atmosphere from space. A compilation of ATMOS spectra of the region from 650 to 4800 cm-1 (2.3 to 16 μm), Vol. I. The Sun, NASA Ref. Publication 1224.Google Scholar
  9. Gidel, L. T., 1983, Cumulus cloud transport of transient tracers, J. Geophys. Res. 88, 6587–6599.Google Scholar
  10. Goldman, A., Murcray, F. J., Blatherwick, R. D., Gillis, J. R., Bonomo, F. S., Murcray, F. H., Murcray, D. G., and Ciccrone, R. J., 1981. Identification of acetylene (C2H2) in infrared atmospheric absorption spectra, J. Geophys. Res. 86, 12,143–12,146.Google Scholar
  11. Greenberg, J. P. and Zimmerman, P. R., 1984, Nonmethane hydrocarbons in remote tropical, continental, and marine atmospheres, J. Geophys. Res. 89, 4767–4778.Google Scholar
  12. Greenberg, J. P., Zimmerman, P. R., and Haagenson, P., 1991, Tropospheric hydrocarbon and CO profiles over the US west coast and Alaska, J. Geophys. Res. in press, 1991.Google Scholar
  13. Hov, O., Penkett, S. A., Isaksen, I. S. A., and Semb, A., 1984, Organic gases in the Norwegian Aretic, Geophys. Res. Lett. 11, 425–428.Google Scholar
  14. Hov, O., Schmidbauer, N., and Oehme, M., 1989, Light hydrocarbons in the Norwegian Arctic, Atmos, Environ. 23, 2471–2482.Google Scholar
  15. Isaksen, I. S. A., Hov, O., Penkett, S. A., and Semb, A., 1985. Model analysis of the measured concentration of organic gases in the Norwegian Aretic, J. Atmos. Chem. 3, 3–27.Google Scholar
  16. Kessel, M. and Bächmann, K., 1991. Long-term nonmethane hydrocarbon and halogenated hydrocarbon measurements at three West German sampling sites, Fresenius J. Anal. Chem. 339, 754–756.Google Scholar
  17. Lightman, P., Kallend, A. A., Jones, B. M. R., and Penkett, S. A., 1990, Seasonal variation of hydrocarbons in the free troposphere at mid-latitudes, Tellus 42B, 408–422.Google Scholar
  18. Maki, A. G. and Olson, W. B., 1989, Intrared spectrum of the ν6, ν7 and ν8 bands of HNO3, J. Molec. Spectrosc. 133, 171–181.Google Scholar
  19. Migeotte, M. V., Neven, L., and Swensson, J., 1956, The solar spectrum from 2.8 to 23.7 microns. I. Photometric atlas, Mém. Soc. Roy. Sci. Liège, Vol. Hors Série, 1.Google Scholar
  20. Norton, R. H. and Rinsland, C. P., 1991. ATMOS data processing and science analysis methods, Appl. Opt. 30, 389–400.Google Scholar
  21. Pickett, H. M., Cohen, E. A., Brown, L. R., Rinsland, C. P., Smith, M. A. H., Malthy Devi, V., Goldman, A., Barbe, A., Carli, B., and Carlotti, M., 1988, The vibrational and rotational spectra of ozone for the (0, 1, 0) and (0, 2, 0) states, J. Molec. Spectrosc. 128, 151–171.Google Scholar
  22. Pugachev, N. S., Bessonov, A. G., and Smirnov, A. S., 1990, Ground-based infrared measurements of the atmospheric ethane (C2H6) and acetylene (C2H2) from high resolution solar absorption spectra, Optica Atmosphery 3, 170–173.Google Scholar
  23. Rasmussen, R. A., Khalil, M. A. K., and Fox, R. J., 1983, Altitudinal and temporal variation of hydrocarbons and other gaseous tracers of arctic haze, Geophys. Res. Lett. 10, 144–147.Google Scholar
  24. Rinsland, C. P., Goldman, A., and Stokes, G. M., 1985, Identification of atmospheric C2H2 lines in the 3230–3340 cm-1 region of high resolution solar absorption spectra recorded at the National Solar Observatory, Appl. Opt. 24, 2044–2046.Google Scholar
  25. Rinsland, C. P., Zander, R., Farmer, C. B., Norton, R. H., and Russell, J. M.III, 1987, Concentrations of ethane (C2H6) in the lower stratosphere and upper troposphere and acetylene (C2H2) in the upper troposphere deduced from Atmospheric Trace Molecule Spectroscopy/Spacelab 3 spectra, J. Geophys. Res. 92, 11,951–11,964.Google Scholar
  26. Rinsland, C. P., Goldman, A., Murcray, F. J.,Murcray, F.J., Blatherwick, R. D., and Murcray, D. G., 1988, Intrared measurements of atmospheric gases above Mauna Loa, Hawaii, in February 1987. J. Geophys. Res. 93, 12,607–12,626.Google Scholar
  27. Rothman, L. S., Gamache, R. R., Goldman, A., Brown, L. R., Toth, R. A., Pickett, H. M., Poynter, R. L., Flaud, J.-M., Camy-Peyret, C., Husson, N., Rinsland, C. P., and Smith, M. A. H., 1987, The HITRAN database: 1986 edition, Appl. Opt. 26, 4058–4097.Google Scholar
  28. Rudolph, J. and Ehhalt, D. H., 1981, Measurements of C2−C5 hydrocarbons over the North Atlantic, J. Geophys. Res. 86, 11,959–11,964.Google Scholar
  29. Rudolph, J., Ehhalt, D. H., Schmidt, U., and Khedim, A., 1982, Vertical distribution of some C2−C5 hydrocarbons in the nonurban troposphere, paper presented at 2nd Symposium on Composition of the Nonurban Troposphere, Am. Meteorol. Soc., Boston, Mass., 1982.Google Scholar
  30. Rudolph, J., Ehhalt, D. H., and Khedim, A., 1984, Vertical profiles of acetylene in the troposphere and stratosphere, J. Atmos. Chem. 2, 117–124.Google Scholar
  31. Rudolph, J., 1988, Two-dimensional distribution of light hydrocarbons: results from the STRATOZ III experiment, J. Geophys. Res. 93, 8367–8377.Google Scholar
  32. Rudolph, J., Khedim, A., and Wagenbach, D., 1989, The seasonal variation of light nonmethane hydrocarbons in the Antarctic troposphere, J. Geophys. Res. 94, 13,039–13,044.Google Scholar
  33. Rudolph, J., 1990, Comments on ‘Light hydrocarbons in the Norwegian Arctic’ by Hov et al., Atmos. Environ. 29, 2889.Google Scholar
  34. Schmidt, R., 1990, Analysis of baseline values of selected air pollution species (in German), Report to the Umweltbundesamt of the Federal Republic of Germany, Grant No. 104 02 577.Google Scholar
  35. Singh, H. B., Viezee, W., and Salas, L. J., 1988, Measurements of selected C2−C5 hydrocarbons in the troposphere: latitudinal, vertical, and temporal variations, J. Geophys. Res. 93, 15,861–15,878.Google Scholar
  36. Smith, M. A. H., Rinsland, C. P., Fridovich, B., and Narahari Rao, K., 1985, Intensities and collision broadening parameters from infrared spectra, in K., Narahari Rao (ed.), Molecular Spectroscopy: Modern Research, Vol. III, Academic Press, Orlando, Fla., pp. 111–248.Google Scholar
  37. Tille, K. J. W., Savelsberg, M., and Bächmann, K., 1985, Airborne measurements of nonmethane hydrocarbons over western Europe: vertical distributions, seasonal cycles of mixing ratios and source strengths, Atmos. Environ. 19, 1751–1760.Google Scholar
  38. U.S. Standard Atmosphere Supplements, 1966, U.S. Government Printing Office, Washington, D.C., 20402.Google Scholar
  39. U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 20402.Google Scholar
  40. Varanasi, P., and Bangaru, B. R. P., 1974, Measurement of integrated intensities of acetylene bands at 3.04, 7.53 and 13.7 μm, J. Quant. Spectrosc. Radiat. Transfer. 14, 839–844.Google Scholar
  41. Zander, R., Stokes, G., and Brault, J., 1982, Détection, par voie spectroscopique, de l'acétylène et de léthane dans l'atmosphère terrestre, à partir d'observations solaires infrarouges au sol, CR Acad. Sci. Paris 295, 583–586.Google Scholar
  42. Zander, R., Rinsland, C. P., and Demoulin, Ph., 1991, Infrared spectroscopic measurements of the vertical column abundance of sulfur hexafluoride, SF6, from the ground, J. Geophys. Res. 96, 15,447–15,454.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • R. Zander
    • 1
  • C. P. Rinsland
    • 2
  • D. H. Ehhalt
    • 3
  • J. Rudolph
    • 3
  • P. H. Demoulin
    • 1
  1. 1.Institute of AstrophysicsUniversity of LiègeLiège-CointeBelgium
  2. 2.Atmospheric Sciences DivisionNASA Langley Research CenterHamptonU.S.A.
  3. 3.Forschungszentrum JülichInstitut für Atmosphärische ChemieJülichGermany

Personalised recommendations