Earth, Moon, and Planets

, Volume 45, Issue 3, pp 265–290 | Cite as

The spatial distribution of volatiles in the Martian hydrolithosphere

  • François M. Costard


In order to quantify the spatial distribution of volatiles on Mars, 2600 fluidized ejecta craters have been systematically measured, classified and mapped over the planet Mars, using 1 : 2 M scale USGS photomosaics. The latitudinal distribution of ejecta craters reveals that flower ejecta deposits (Type 1), together with low mobility ejecta, are frequently observed in the equatorial region and on ridged plains. Rampart craters (Type 2), with high mobility ejecta, occur at mid latitudes and exhibit a spatial relationship with polygonal patterns and pseudocrater areas. The increase of ejecta mobility with latitude attests for a concentration of volatiles at high latitudes. Statistical analysis shows that cratered uplands and ridged plains contain less volatile material near the surface than the underlying materials. In Chryse Planitia and Utopia Planitia the statistical study and the spatial relationships between polygonally fractured patterns, pseudocraters and the great number of high mobility ejecta deposits suggest the presence of a water-rich alluvial deposit close to the surface near the mouth of Chryse and Elysium channels. This result explains, on a more quantitative basis, the idea that fractured patterns were preferentially developed in a volatile-rich sedimentary deposits. The behaviour of volatiles, at 41 ‡ S, 257 ‡ W near Reull Vallis, exhibits a strong anomaly, with the presence of an abnormally volatile rich layer close to the surface.


Spatial Distribution High Latitude Statistical Study Spatial Relationship Sedimentary Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, C. C.: 1979, ‘Volcano-Ice Interactions on Mars’, J. Geophys. Res. 84, 8048–8059.Google Scholar
  2. Arvidson, R. E., Carusi, A., Coradini, A., Coradini, M., Fulchignoni, M., Federico, C., Funicello, R., and Salomone, M.: 1976, ‘Latitudinal Variation of Wind Erosion of Crater Ejecta Deposits on Mars’, Icarus 27, 503–516.Google Scholar
  3. Baker, V. R.: 1982, The Channels of Mars, University of Texas Press, Austin.Google Scholar
  4. Battistini, R.: 1984, ‘Morphology and Origin of Ridges in Low-Latitude Areas of Mars’, Earth, Moon and Planets 31, 49–61.Google Scholar
  5. Battistini, R.: 1985, in J. Klinger et al. (ed.), ‘Hydrolithosphere and Problems of Subsurface Ice in the Equatorial Zone of Mars’, Ices in the Solar System, pp. 607–617.Google Scholar
  6. Blasius, K. R. and Cutts, J. A.: 1981, ‘Planetary Geological Studies’, Quarterly Report, NASA-3208.Google Scholar
  7. Boyce, J. M.: 1979, ‘A Method for Measuring Heat Flow in the Martian Crust Using Impact Crater Morphology’, NASA Tech. Memo. 80339, pp. 114-118.Google Scholar
  8. Carr, M. H., Crumpler, L. S., Cutts, J. A., Greeley, R., Guest, J. E., and Mazursky, H.: 1977, ‘Martian Impact Craters and Emplacement of Ejecta by Surface Flow’, J. Geophys. Res. 82, 4055–4065.Google Scholar
  9. Carr, M. H.: 1982, ‘Martian Climate Changes’, Icarus 68, 187–216.Google Scholar
  10. Carr, M. H.: 1982, ‘Martian Climate Change’, Icarus 50, 129–139.Google Scholar
  11. Carr, M. H.: 1986, ‘Mars a Water-Rich Planet?’, Icarus 68, 187–216.Google Scholar
  12. Costard, F. M.: 1985, ‘Le modéle d'une région thermokarstique sur Mars’, Mémoire de maîtrise, 111 pp.Google Scholar
  13. Costard, F. M.: 1988, ‘Thickness of Sedimentary Deposits at the Mouth of Outflow Channels’, Lunar and Planet. Sci. Conf. 19th, pp. 211–212.Google Scholar
  14. Cutts, J. A.: 1973, ‘Nature and Origin of Layered Deposits of the Martian Polar Regions’, J. Geophys. Res. 78, 4231–4249.Google Scholar
  15. Fanale, F. P.: 1976, ‘Martian Volatiles: Their Degassing History and Geochemical Fate’, Icarus 28, 179–202.Google Scholar
  16. Frey, H. and Jarosewich, M.: 1982, ‘Subkilometer Martian Volcanoes: Properties and Possible Terrestrial Analogs’, J. Geophys. Res. 87, 9867–9870.Google Scholar
  17. Gault, D. E. and Greeley, R.: 1978, ‘Exploratory Experiments of Impact Craters Formed in Viscous-Liquid Targets/Analog for Rampart Craters’, Icarus 34, 486–495.Google Scholar
  18. Head, J. W. and Roth, R.: 1976, Mars Pedestal Crater Escarpments: Evidence for Ejecta-Related Emplacement, Symposium on Planetary Cratering Mechanics 50–52. The Lunar Sci. Inst., Houston.Google Scholar
  19. Horner, V. M. and Greeley, R.: 1987, ‘Effects of Elevation and Ridged Plains Thickness on Martian Crater Ejecta Morphology’, J. Geophys. Res. 92, E561-E569.Google Scholar
  20. Johansen, L. A.: 1979, ‘The Latitude Dependence of Martian Splash Cratering and its Relationship to Water‘, NASA, Tech. Memo. 80339, pp. 123–125.Google Scholar
  21. Kargel, J. S.: 1986, ‘Morphological Variations of Martian Rampart Crater Ejecta and Their Dependences and Implications. (Abstract)’, Lunar and Planet. Sci. Conf. 17th, pp. 410–411.Google Scholar
  22. Kuzmin, R. O.: 1980, ‘Morphology of Fresh Martian Craters as an Indicator of the Depth of the Upper Boundary of the Ice-Bearing Permafrost’, Proc. Lunar Planet. Sci. Conf., pp. 585–586.Google Scholar
  23. Lucchitta, B. K.: 1981, ‘Mars and Earth: Comparison of Cold-Climate Features’, Icarus 45, 264–303.Google Scholar
  24. Lucchitta, B. K. and Ferguson, H. M.: 1983, ‘Chryse Basin Channels: Low Gradients and Ponded Flows’, Proc. Lunar Planet. Sci. Conf. part 2, 13th. J. Geophys. Res. 88, A553–A568.Google Scholar
  25. Lucchitta, B. K.: 1984, ‘Ice and Debris in the Fretted Terrain’, Mars. J. Geophys. Res. 89, B409-B418.Google Scholar
  26. Lucchitta, B. K., Ferguson, H. M., and Summers, C.: 1986, ‘Sedimentary Deposits in the Northern Lowland Plains, Mars’, Proc. Lunar Planet. Sci. Conf., J. Geophys. Res. 91, E166–E174.Google Scholar
  27. McGill, G. E.: 1985, ‘Age and Origin of Large Martian Polygons (Abstract)’, Lunar and Planet. Sci. Conf. XVI, 534–535.Google Scholar
  28. Mouginis-Mark, P. J.: 1979, ‘Martian Fluidized Crater Morphology: Variations with Crater Size, Latitude, Altitude, and Target Material’, J. Geophys. Res. 84, 8011–8022.Google Scholar
  29. Mouginis-Mark, P. J.: 1981, ‘Ejecta Emplacement and Modes of Formation of Martian Fluidized Craters’, Icarus 45, 60–76.Google Scholar
  30. Mutch, T. A., Arvidson, R. E., Head, J. W., Jones, K. L., and Saunders, R. S.: 1976, The Geology of Mars, Princeton Univ. Press, Princeton.Google Scholar
  31. Pechmann, J. C.: 1980, ‘The Origin of Polygonal Troughs on the Northern Plains of Mars’, Icarus 42, 185–210.Google Scholar
  32. Rossbacher, L. A. and Judson, S.: 1981, ‘Ground Ice on Mars: Inventory, Distribution and Resulting Landforms’, Icarus 45, 25–38.Google Scholar
  33. Squyres, S. W.: 1979, ‘The Distribution of Lobate Debris Aprons and Similar Flows on Mars’, J. Geophys. Res. 84, 8087–8096.Google Scholar
  34. Thomas, P. G. and Masson, Ph. L.: 1985, ‘Martian Fluidized Crater Distribution: Tectonic Implications’, Earth, Moon, and Planets 34, 169–176.Google Scholar
  35. Washburn, A. L.: 1973, Periglacial Processes and Environments, St. Martin's Press, New York, 320 pp.Google Scholar
  36. West, M.:1974, ‘Martian Volcanism: Additional Observations and Evidence of Pyroclastic Activity’, Icarus 21, 1–11.Google Scholar
  37. Wohletz, K. M. and Sheridan, M. F.: 1983, ‘Martian Rampart Crater Ejecta: Experiments and Analysis of Melt-Water Interaction’, Icarus 56, 15–37.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • François M. Costard
    • 1
    • 2
  1. 1.Laboratoire de Géographie Physique, CNRS MeudonFrance
  2. 2.Laboratoire Physique du Système Solaire, Observatoire de MeudonFrance

Personalised recommendations